Product How-to: Balancing the major elements of an isolator for safety’s sake

David Krakauer, Product Line Manager, iCoupler® Digital Isolator Group, Analog Devices Inc. -December 06, 2013

For years, designers of industrial, medical, and other isolated systems had limited options when implementing safety isolation: the only reasonable choice was the optocoupler.  Today, digital isolators offer advantages in performance, size, cost, power efficiency and integration.  Understanding the nature and interdependence of three key elements of a digital isolator is important in choosing the right digital isolator.  These elements are insulation material, their structure, and data transfer method.

Designers incorporate isolation because of safety regulations or to reduce noise from ground loops, etc.  Galvanic isolation ensures data transfer without an electrical connection or leakage path that might create a safety hazard.  Yet, isolation imposes constraints such as delays, power consumption, cost and size.  A digital isolator’s goal is to meet safety requirements while minimizing incurred penalties.

Optocouplers, a traditional isolator, incur the greatest penalties.  They consume high levels of power and limit data rates to below 1 Mbps.  More power efficient and higher speed optocouplers are available but impose a higher cost penalty.

Digital isolators were introduced over 10 years ago to reduce penalties associated with optocouplers.  They use CMOS-based circuitry and offer significant cost and power savings while significantly improving data rates.  They are defined by the elements noted above.  Insulating material determines inherent isolation capability and is selected to ensure compliance to safety standards.  Structure and data transfer method are chosen to overcome the cited penalties.  All three elements must work together to balance design targets, but the one target that cannot be compromised and “balanced” is the ability to meet safety regulations.

Insulation Material

Digital isolators use foundry CMOS processes and are limited to materials commonly used in foundries.  Non-standard materials complicate production, resulting in poor manufacturability and higher costs.  Common insulating materials include polymers such as polyimide (PI), which can be spun on as a thin film, and silicon dioxide (SiO2).  Both have well known insulating properties and have been used in standard semiconductor processing for years.  Polymers have been the basis for many optocouplers, giving them an established history as a high-voltage insulator.

Safety standards typically specify a 1 minute voltage withstand rating (typically 2.5 kV rms to 5 kV rms) and working voltage (typically 125 V rms to 400 V rms).  Some standards also specify shorter duration, higher voltage (e.g., 10 kV peak for 50 µs) as part of certification for reinforced insulation.  Polymer/polyimide-based isolators yield the best isolation properties:

Polyimide-based digital isolators are similar to optocouplers and exceed lifetime at typical working voltages.  SiO2-based isolators provide weaker protection against surges, preventing use in medical and other applications.

The inherent stress of each film is also different.  Polyimide has lower stress than SiO2 and can increase in thickness as needed.  SiO2 thickness, and therefore isolation capability, is limited; stress beyond 15 µm may result in cracked wafers during processing or delamination over the life of the isolator.  Polyimide-based digital isolators use isolation layers as thick as 26 µm.

Loading comments...

Write a Comment

To comment please Log In