Design Con 2015

Teardown: Inside the Apple iPhone 5

Allan Yogasingam -September 21, 2012

Apple is considered by many to be the leader of the smartphone market. Within 5 years, Apple has generated over $150 billion in revenue from the iPhone family of handsets and accessories (according to research firm Strategy Analytics) and over 100 million units of the iPhone itself have been purchased by consumers.

With an estimated 2 million units sold via Apple's online pre-order system for their latest handset, the Cupertino-based company doesn't plan on relinquishing that title of "king of the smartphone" any time soon. Touted by many as the most innovative iPhone since its introduction – the Apple iPhone 5 offers Apple's first re-design of their flagship product since the "squaring" of the iPhone 4. The iPhone 5 marks Apple's first time moving beyond their 3.5" touchscreen comfort zone, with the introduction of a lengthened 4.0 inch screen.

As the first of the iPhone family to divert from its traditional 3.5 inch screen, the latest iPhone now boasts a larger Retina display with a resolution of 1136 x 640 and 326 pixels per square inch (ppi). The design of the Apple iPhone 5 with its larger size also re-introduces the front-to-back manufacturing model that was last seen with the iPhone 3GS. One wonders if Foxconn, the electronics manufacturing facility of choice for Apple, had any influence in the design change as front-to-back manufacturing would make for easier assembly.

Since the introduction of the iPhone by Apple in January of 2007, the handset has been the very definition of "iterative improvement". The first iPhone, with its multi-touch screen and application-based environment, was considered revolutionary to the smartphone segment. Since that time, there has been five generations of iPhone models, each one improving on the model preceding it. Marketed as the most dramatic improvement of the iPhone – does the iPhone 5 really differ much from its descendents? Let's take a look inside to understand what changes at the component level the iPhone 5 reveals.

A closer look inside the iPhone 5
For the fact that there are different flavors of the iPhone 5 – ours is the A1428 model, optimized for the AT&T and Canada's LTE networks.

One of Apple's keys to success is their component selection. Under the direction of then Senior VP of Supply Chain, and now current CEO, Tim Cook, Apple developed supplier relationships from the development of the very first iPhone that have only strengthened with every iteration of the handset. From a supply chain point-of-view, what this tells us is that Apple is relatively set in their partnerships with semiconductor manufacturers – making opportunities for those manufacturers not currently entrenched with Apple nearly non-existent. For example, ten manufacturers who found themselves with design wins in the original iPhone, found themselves with the same socket wins within the iPhone 5.

A quick look inside Apple's latest handset reveals that larger semiconductor manufacturers like Samsung, Texas Instruments and ST Microelectronics are a large part of the iPhone's development and smaller companies like Dialog Semiconductor (provider of the main power management IC), Skyworks (providers of the baseband power amplifier modules) and TriQuint (providers of the power amplifier modules) continue to gain massively with their socket wins inside the iPhone 5.

In fact, it is often major news when Apple does decide to replace a manufacturer on a key component selected for the iPhone. For example, it was newsworthy when Apple made the switch from utilizing Infineon-manufactured baseband processors to those from Qualcomm. That transition was made rather slowly though, as Apple created a GSM version of the iPhone 4 using an Infineon baseband processor and a CDMA version of the same handset using Qualcomm's baseband chip. The switch to Qualcomm seemed imminent as the IC selected for the CDMA version, had GSM capability. To the surprise of few, the iPhone 5 continues to use Qualcomm baseband circuitry.

The iPhone 5 also heralds Apple's move into the 4G wireless landscape. Apple's latest handset is the first to incorporate LTE baseband, matching the baseband capability of the 3rd generation iPad. Within this handset lies three design wins for Qualcomm, all relative to their LTE technology. The "crown jewel" of these ICs is the MDM9615. This device, manufactured at the 28nm process node, is a mobile data modem that supports LTE (FDD and TDD), DC-HSPA+, EV-DO Rev-B and TD-SCDMA, making it a truly global baseband IC – capable of functioning on any carrier. With the MDM9615 are the natural pairs of the PM8018 power management IC and the RTR8600 quad-band transceiver with GPS. All three are part of Qualcomm's LTE ecosystem and were selected because of their operability with each other.

Qualcomm MDM9615 die marking

Qualcomm PM8018 die marking

Qualcomm RTR8600 die photo

Returning to what is now their sixth appearance within the iPhone 5 is STMicroelectronics paired accelerometers – the L3G4200DH 3-axis digital MEMS gyroscope and the LIS331DLH 3-Axis MEMS accelerometer. Apple feels very comfortable with both of these devices and one wonders if Nintendo will continue to use these same ICs as well in their next console, the Wii U.

Speaking of familiar manufacturers, Dialog Semiconductor retains its Power Management IC socket with a new device, the Agatha II, or the D2013. Cirrus Logic also retains their audio codec in the iPhone family as well.

Dialog D2013 Power Management IC

Cirrus Logic Audio Codec

For the memory on the iPhone 5, the 32 GB of NAND flash on our device is provided by SanDisk. The processor memory is found on a package-on-package (PoP) with the A6 applications processor. For our handset, our PoP utilized Elpida's B8164B3PM 1 GB Low-Power DDR2 (LPDDR2) SDRAM.

Lastly, Broadcom maintains its key design wins in the iPhone 5 with the major win being Broadcom's BCM4334 single-chip dual-band 802.11n, Bluetooth 4.0+HS & FM receiver combo chip providing the wireless connectivity to the handset. This same die was found within the Samsung Galaxy S3 so suffice to say, this combo device is the current king of WiFi.

Inside the Murata module containing the Broadcom BCM4334


Loading comments...

Write a Comment

To comment please Log In