Batteries safe for use in humans and fish

-February 24, 2017

Batteries of various technologies and form factors get a lot of attention for many reasons. Everyone is looking for a battery with higher energy density by weight and volume, with superior discharge (and even charge) specifications, and low cost. As a result, there's been lots of attention on lithium-ion (Li-ion) chemistry and its many variations, since that seems to offer – at least for the foreseeable future – the greatest potential (pun intended) in meeting those density objectives.

Still, there are applications where unusual chemistries, construction, and form factor are the priorities, more than just an incrementally better Li-ion cell.  Consider the work being done by a team lead by Prof. Christopher Bettinger at Carnegie Mellon University. They are developing edible, biocompatible batteries that use non-toxic materials already present in the body, with available liquids such as stomach acid as the electrolyte; see references below (Figure 1). His team has produced cathodes based on melanin, a pigment already in the body, and anodes made of manganese oxide, which is also already present; other versions based on body-friendly materials have also been developed.

The idea is that the electrodes will dissolve harmlessly after use. Most of the resulting batteries, using a variety of soluble cations, had modest voltages (between 0.5 and 0.7 volts); although definitive specifications are hard to find, there was one mention of 5 milliwatts of power for up to 20 hours.


Figure 1
Prof. Christopher Bettinger of Carnegie Mellon University dramatically demonstrates what may be possible with the edible batteries his team is developing. (Source: Carnegie Mellon University)

It’s not just humans who need special batteries. A microbattery developed by Pacific Northwest National Laboratory (see "A battery small enough to be injected, energetic enough to track salmon") is just 6 mm long and 3 mm wide and weighs only 70 mg (Figure 2), and is used to power acoustic fish tags. It is hand-crafted of multiple layers that are then rolled up (Figure 3), which increases the internal surface area and so reduces internal resistance—a weak spot in many real-world battery implementations. Although each is handmade, about 1000 of these have been constructed, and they have implanted over 700 of these into fish to power tracking devices.


Figure 2
These rice-grain sized batteries are hand assembled, and used to power acoustic fish tags. Source: Pacific Northwest National Laboratory   


Figure 3
The fish-tag batteries are constructed of layers which are then rolled up and inserted into tiny cans. Source: Pacific Northwest National Laboratory

These grain-of-rice sized batteries can supply enough power to send a 744-microsecond signal every three seconds for about three weeks (or about every five seconds for a month). Energy density is specified at 240 WHr/kg, compared to around 100 WHr/kg for standard silver oxide button microbatteries – although you do have to wonder how these measurements are made and if they are fair comparisons!

These specialty batteries have other unique issues as well, such as providing for connection or attaching the leads. The Pacific Northwest microbattery has internal leads; it’s not clear how the edible ones from Carnegie Mellon are connected. Certainly, users of these batteries won't be able to go to battery-holder vendors and get a standard connector or holder.

Have you ever had to specify, design, or resort to a highly specialized, unique, custom microbattery? Was this an early-on decision, or one that came into play late in the design cycle?

References
  1. Sensors You Can Swallow Could Be Made of Nutrients and Powered by Stomach Acid, IEEE Spectrum 
  2. Carnegie Mellon's Christopher Bettinger Develops Edible Electronics for Medical Device Industry, Carnegie Mellon University
  3. Battery you can swallow could enable future ingestible medical devices, Science Daily
  4. Materials Advances for Next-Generation Ingestible Electronic Medical Devices, Trends in Biotechnology
  5. A bodily pigment may have industrial uses, The Economist
 

Also see:

Loading comments...

Write a Comment

To comment please Log In

FEATURED RESOURCES