Fast-settling picoammeter circuit handles wide voltage range

Rob Whitehouse - September 14, 2006

Evaluating analog switches, multiplexers, operational amplifiers, and other ICs poses challenges to IC-test engineers. A typical test scenario requires application of a test or forcing voltage to a device's input and measurement of any resultant leakage and offset currents, often at levels of 1 pA or less. In contrast to slow and expensive commercially available automated testers, the low-power measurement circuit in figure 1, figure 2, and figure 3 can force a wide range of test voltages and offer fast settling to maximize device-test throughput. Extensive use of surface-mounted components minimizes its pc-board-space requirements and allows packaging of multiple measurement circuits close to the test fixture.

The circuit comprises a forcing-voltage buffer/amplifier, a floating-rail power supply, and an IVC (current-to-voltage converter). Applying a forcing voltage to a device under test induces leakage current, which the circuit converts to an output voltage proportional to the leakage current. In a conventional IVC, the current to be measured develops a voltage across a shunt resistor. The IVC uses a feedback-ammeter topology in which operational amplifier IC₁, an Analog Devices AD795, subtracts an unknown current from a feedback current and delivers an output voltage proportional to the unknown current (Figure 1).

In this design, the input's dc resistance consists mostly of R₂ and IC₁'s effective input resistance, or slightly more than 100Ω at dc. At frequencies in the power-line range of 50 to 300 Hz, the circuit's ac impedance averages approximately 10 kΩ, or 1000 times less than a typical shunt-resistance IVC's input resistance of approximately 10 MΩ. The circuit's 100-MΩ feedback resistor, R₄, provides a current-to-voltage-conversion ratio that exceeds the shunt-conversion ratio by a factor of 10. This design settles much faster and provides better interference rejection at power-line frequencies than shunt converters. It also reduces unwanted voltage-divider effects when testing operational amplifiers' input currents.

R₁ produces a current-to-voltage-conversion ratio of 100 µV/pA. Amplifier IC₂, an AD795, provides an additional voltage gain of 10, boosting the ratio to 1 mV/pA and reducing the effect of errors that differential amplifier IC₃'s CMRR (common-mode-rejection ratio) introduces. Differential amplifier IC₃, an OP1177, subtracts the forcing voltage from the IVC's output and provides a ground-referenced output signal.

A back-to-back pair of BAV199 diodes, D₁A and D₁B, protects IC₁ from voltage overloads by shunting high currents to the forcing-voltage amplifier, IC₄, and its protective fuse, F₁. When the forcing voltage rapidly slews from one value to another, the diodes greatly improve the IVC's settling time by providing high-drive currents during high-slew-rate intervals.
Operating from ±30V supply rails, a lightly compensated, gain-of-three, high-voltage OPA551 amplifier, IC₄, derives forcing voltages as high as ±22V from ordinary ATE (automatic-test-equipment) voltages of ±7V (Figure 2). In case of a catastrophically shorted device under test, fuse F₁ prevents further damage by limiting fault current from IC₄, which can deliver as much as 380 mA of short-circuit current.

The output of IC₄ also drives a regulator circuit that produces ±5V floating-power-supply voltages referenced to the test-input forcing voltage (Figure 3). This part of the circuit dissipates less than 100 mW of power with ±30V supplies. Vishay/Siliconix SST505 JFET constant-current regulator "diodes" Q₁ and Q₄ provide 1-mA constant-current sources, which transistors Q₂ and Q₃ buffer. Each current-regulator diode carries a 45V maximum rating, and the buffers provide overvoltage protection by limiting the voltages applied across the diodes to approximately 3V.

Applying 1 mA to resistors R₅ and R₆ develops the ±5V rail voltages. Diodes D₂ and D₃ compensate for the base-emitter-voltage drops across emitter followers Q₆B and Q₇B. Transistors Q₆A and Q₇A provide overvoltage protection when a defective device under test short-circuits its power supply to the IVC’s input node. Transistors Q₅ and Q₈ limit the floating supplies’ output currents by shunting the current diodes. Diode D₄ protects against polarity inversion of the floating-supply rails during unusual start-up conditions.

In operation, the circuit delivers an output of 0.999V/nA over a ±4-nA full-scale input range at an effective transresistance of 1 GΩ. The circuit’s output offset corresponds to approximately 143 fA. Beyond the forced-voltage span of ±22V, the floating-supply- rail voltages begin to saturate, the input-CMRR limitations of IC₃ become evident, and the IVC’s output voltage becomes nonlinear. Figure 4 shows the circuit’s current-measurement error of -31 fA/V from the circuit’s unloaded output over a ±20V forcing-voltage span. The differential amplifier comprising IC₃, R₉₂, and R₉₃ contributes most of the circuit’s gain, and IC₁’s low input-bias current contributes to the low offset error. Output linearity over the ±20V forcing-voltage range averages 111 fA p-p.

The circuit’s slew-rate capability varies considerably, but in general the output faithfully slews the entire 40V forcing-voltage span in 100 µsec or less as D₁ drives the device under test. Once the high-slew period completes, the IVC comes out of saturation, and its output becomes an exponential voltage with a time constant of 1 msec. The output settles to 100 fA in approximately 10.6 msec. Under no-load conditions, the circuit consumes approximately 10.2 mA from the ±30V supplies and 400 µA from the ±15V supplies. The prototype circuit’s layout occupies approximately 1.5 in.² on a single-sided pc board, and placing components on both sides of a double-sided board would reduce the area to 1 in.² For best performance, the layout must include guard rings around the input terminal and all traces attached to Pin 2 of IC₁. The circuit’s size allows its placement on a device-under-test fixture to minimize lead lengths and power-line-induced electromagnetic interference. Although able to measure currents as small as 1 pA, the circuit can accommodate larger currents by reducing the value of R₁.