Add a Schmitt-trigger function to CPLDs, FPGAs, and applications

Stephan Roche, Santa Rosa, CA; Edited by Brad Thompson and Fran Granville - October 13, 2005

![Figure 1](image)

Figure 1 Use a portion of a programmable-logic device or gate array to implement a Schmitt-trigger buffer (a) by adding either two (b) or four external resistors (c).

Thanks to its internal hysteresis, the highly useful Schmitt-trigger circuit accepts a low-slew-rate input signal and produces a clean, glitch-free output transition. Unfortunately, user-programmable logic devices, such as CPLDs and FPGAs, generally offer no direct method of synthesizing Schmitt-trigger gates and buffers. This Design Idea shows how a few external components and some VHDL code can implement a Schmitt trigger and put it to work in several useful applications.

To create an equivalent of the basic Schmitt-trigger buffer, you use two external resistors to create
positive feedback around a buffer (Figure 1a and b). You can also use four external resistors to set two threshold levels around an R-S flip-flop (Figure 1c). The following equations, respectively, describe the basic Schmitt trigger’s positive- and negative-threshold levels:

\[V_+ = \frac{R_1}{R_2} V_{CC} + V_{TH} \left(1 - \frac{R_1}{R_2} \right) \]

\[V_- = V_{TH} \left(1 - \frac{R_1}{R_2} \right) \]

In these equations, \(V_{in} \) represents the input-voltage threshold of the CPLD/FPGA device, and \(V_{CC} \) is its power-supply voltage.

Based on the equivalent Schmitt-trigger circuit in Figure 1b, the low-cost resistance-capacitance oscillator in Figure 2 requires four external passive components. Resistor R and capacitor C set the circuit’s oscillation frequency. Note that the resistance values of \(R_1 \) and \(R_2 \) must be larger than that of R. Listings 1 and 2 (download all listings here) contain the circuit’s VHDL implementation and RTL architecture, respectively.

![Figure 2](image.png)

Figure 2 Add a resistor and capacitor to a basic Schmitt-trigger buffer to form a low-cost oscillator.

In Figure 3, an open-collector buffer provides the trigger for the basic Schmitt-trigger-retriggerable monostable circuit by discharging timing capacitor C. The circuit's output pulse width approximately equals the time constant \(RC \). Listing 3 shows the VHDL implementation and RTL architecture, respectively.
Figure 3 An active-low buffer holds timing capacitor C discharged in this version of a retriggerable monostable multivibrator based on the Schmitt-trigger buffer.

You can convert the retriggerable monostable into the nonretriggerable monostable in Figure 4 by using an open-collector NAND gate to discharge timing capacitor C. As long as the circuit’s output remains high during the timing interval, the system locks out external triggers. As in the previous circuit, the output pulse width approximately equals the time constant RC. Listing 4 contains the VHDL and RTL codes.

Figure 4 A NAND gate locks out trigger pulses, forming a nonretriggerable, monostable circuit.

You can use the basic CPLD buffer-with-feedback circuit to provide hysteresis for a contact-debouncing circuit. In Figure 5, resistor R_p provides contact-cleaning current, and R_1 and C form a lowpass filter to reduce noise that contact bounce generates. Component values vary depending on the application.
Figure 5 Use a Schmitt trigger to debounce switch contacts.

Also see:

- Schmitt trigger adapts its own thresholds
- Simple changes improve Schmitt trigger