Build a precise dc floating-current source

D Ramirez - August 18, 2005

Although well-known to active-filter theorists and designers, GICs (generalized impedance converters) may be less familiar to analog generalists. Comprising a one-port active circuit typically comprising low-cost operational amplifiers, resistors, and capacitors, a GIC transforms capacitive reactance into inductive reactance and thus can substitute for an inductor in a filter that an RLC-transfer function describes. In addition, the flexibility of a GIC's input-impedance equation permits the design of virtual impedances that don't exist as physical components—for example, frequency-dependent resistance ([Reference 1](#)). The GIC, which its developers introduced 30 years ago, has seen its greatest application in ac-circuit and active-filter applications.

Figure 1 shows a classic GIC circuit in which the input impedance, Z_{IN}, depends on the nature of impedances Z_1 through Z_5. The following equation describes the circuit's input impedance:

$$Z_{IN} = \frac{V_{IN}}{I_{IN}} = \frac{Z_1 \times Z_3 \times Z_5}{Z_2 \times Z_4}.$$

For example, if Z_1, Z_2, Z_3, and Z_5 comprise resistors R_1, R_2, R_3, and R_5, and Z_4 comprises capacitor C_4, then the input impedance, Z_{IN}, appears as a virtual inductor of value L_{IN}:

$$L_{IN} = \frac{R_1 \times R_3 \times R_5 \times C_4}{R_2}.$$

Figure 2 shows the GIC circuit in its dc configuration. When you consider the GIC circuit in a purely dc environment, you can envision new applications. For example, you could replace impedances Z_1 through Z_5 with pure resistances R_1 through R_5. Instead of an ac input-voltage source, connect a precision temperature- and time-stable dc reference voltage to the input port. A simple circuit analysis using ideal op amps for IC$_1$ and IC$_2$ shows that the reference input voltage, V_{REF}, appears across resistor R_5, and, as the following equation shows, a constant current, I_0, flows through R_5.

$$I_0 = \frac{V_{REF}}{R_5}.$$

However, op amp IC$_2$'s noninverting input diverts a small amount of current from the junction of R_4 and R_5, and I_0 thus also flows through R_4. Selecting large values for R_4, R_5, and R_5 helps minimize current drawn from the reference voltage. For example, the circuit can supply 2 to 10 mA to R_4 and draw only a few tenths of a microampere from the reference source. Using tight-tolerance and low-drift components for V_{REF} and R_5 ensures the stability of I_0. Applications include providing constant-current drive for Wheatstone-bridge and platinum-element sensors ([Reference 2](#)). In addition, you can replace R_4 with a series of resistive sensors as in an Anderson loop ([Reference 3](#)).
References

Click [here](#) for more Design Ideas!