Solar-array controller needs no multiplier to maximize power

Stephen Woodward - December 05, 2008

Solar-photovoltaic arrays are among the most efficient, cost-effective, and scalable “green” alternatives to fossil fuels, and researchers are almost daily announcing new advances in photovoltaic technology. But successful application of photovoltaics still depends on strict attention to power-conversion efficiency. Figure 1 shows one reason for this attention.

Figure 1 It is important to operate solar-photovoltaic arrays at their maximum power point.

A photovoltaic array’s delivery of useful power to the load is a sensitive function of load-line voltage, which in turn depends on insolation—that is, sunlight intensity—and array temperature. Operation anywhere on the current/voltage curve except at the optimal maximum-power-point voltage results in lowered efficiency and a waste of valuable energy. Consequently, methods for maximum-power-point tracking are common features in advanced solar-power-management systems because they can boost practical power-usage efficiency—often by 30% or more.
Because of its generality, a popular maximum-power-point-tracking-control algorithm is perturb and observe, which periodically modulates, or perturbs, the load voltage; calculates, or observes, the instantaneous transferred power response; and uses the phase relationship between load modulation and calculated power as feedback to “climb the hill” of the current/voltage curve to the maximum-power-point optimum. The perturb-and-observe algorithm is the basis of the maximum-power-point-tracking-control circuit (Figure 2, in yellow) but with a twist (in blue), which achieves a feedback function equivalent to a current-times-voltage power calculation but without the complexity of a conventional multiplier. The idea relies on the well-known logarithmic behavior of transistor junctions, $V_{BE} = (kT/q)\log(Ic/I_s) = (kT/q)\left[\log(I_c) - \log(I_s)\right]$, where V_{BE} is the base-to-emitter voltage. It also relies on the fact that adding logarithms is mathematically equivalent to multiplication. Here’s how.

![Diagram](image)

Figure 2 This maximum-power-point-tracking controller relies on well-known logarithmic behavior of transistor junctions. (Click to enlarge)

Capacitor C_2 couples a 100-Hz, approximately 1V-p-p-modulation or 1V-p-p-perturbation square wave from the S_1/S_2 CMOS oscillator onto the photovoltaic-input voltage, V. The current/voltage curve of the array causes the input current, I, to reflect the V modulation with a corresponding voltage-time-current input-power modulation. IC_{1A} forces I_{Q1} to equal $I \times x_1$, where I is the solar-array current and x_1 is a gain constant. IC_{1B} forces I_{Q2} to equal $V/(499 \ \Omega)$, where V is the solar-array voltage. Thus, $V_{Q1} = (kT/q)\left[\log(I) - \log(I_{S1}) + \log(x_1)\right]$ and $V_{Q2} = (kT/q)\left[\log(V) - \log(I_{S2}) - \log(499 \ \Omega)\right]$. V_{Q1} is the base-emitter voltage of Q_1; k is the Boltzman constant; T_1 is the temperature of Q_1; q is the elementary charge of the electron; I is the current input from the solar panel’s negative terminal; I_{S1} is the saturation current of Q_1; x_1 is the arbitrary gain constant, which IC_3 determines; V is the voltage...
input from the solar panel’s positive terminal; I_{S2} is the saturation current of Q_2; K is degrees Kelvin; V_{PF} is the power-feedback signal; and V_{IP} is the calculated power-input signal. Because k, q, I_{S1}, I_{S2}, x_1, and 499 kΩ are all constants and $T_1=T_2=T$, however, for the purposes of the perturb-and-observe algorithm, which is interested only in observing the variation of current and voltage with perturbation, effectively, $V_{Q1}=(kT/q)\log(I)$, and $V_{Q2}=(kT/q)\log(V)$.

The series connection of Q_1 and Q_2 yields $V_{PF}=V_{Q1}+V_{Q2}=(kT/q)[\log(I)+\log(V)]=(kT/q)\log(I)$, and, because of IC$_{1B}$’s noninverting gain of three, $V_{IP}=3(kT/q)\log(V)I=765 \mu V/%$ of change in watts. The V_{IP} log (power) signal couples through C_1 to synchronous demodulator S_1, and error integrator and control op amp IC$_{1c}$ integrates the rectified S_1 output on C_3. The IC$_{1c}$ integrated error signal closes the feedback loop around the IC$_3$ regulator and results in the desired maximum-power-point-tracking behavior.

Using micropower parts and design techniques holds the total power consumption of the maximum-power-point-tracking circuit to approximately 1 mW, which avoids significantly eroding the efficiency advantage—the point of the circuit in the first place. Meanwhile, simplifying the interface between the maximum-power-point-tracking circuit and the regulator to only three connection nodes—I, V, and F—means that you can easily adapt the universal maximum-power-point-tracking circuit to most switching regulators and controllers. Therefore, this Design Idea offers the efficiency advantages of a maximum-power-point-tracking circuit to small solar-powered systems in which more complex, costly, and power-hungry implementations would be difficult to justify.