A simple high-voltage MOSFET inverter solves the problem of driving a high-side MOSFET, using a low-voltage transistor, Q_1, and a special arrangement involving D_6 (Figure 1). This inverter is much faster than those that optocouplers drive, so dead-time problems are minimal. The inverter has the usual blocking diodes D_4 and D_6, and the parallel diodes D_5 and D_8. Q_3 provides the turn-off signal to Q_2. When Q_3 turns on, Q_2's gate short-circuits to ground through R_4. R_4 limits current and dampens oscillations. Q_1's gate discharges quickly; only the value of R_4 limits discharge time. Q_1 stays off, thanks to R_2, and C_3 charges to 12V through D_2. The gate pulse creates a current through C_4, and D_3 protects the base-emitter junction of Q_1.

In the turn-on of Q_2, the following scenario occurs: When the control input, PWM, goes low, Q_3 quickly turns off, thanks to D_7. A displacement current, $C_4 \times dV/dt$, flows through C_4 to the base of Q_1. Q_1 charges the output capacitance of Q_3 and the gate capacitance of Q_2, and Q_2 turns on. C_3 supplies the collector current. If the period is long, Q_1 keeps conducting and compensating the leakage of Q_3. If D_6 were a Schottky diode, which is leaky, you would have to reduce the value of R_4. A short cross-conduction period exists between the two MOSFETs, a phenomenon that is more apparent when Q_3 turns off and Q_2 turns on. A small inductor, L_1, in series with the main supply limits the current spikes. The inductor needs a snubber comprising D_1, R_1, and C_2. Note that the inductor value is conservative and can be smaller.

The values are for a 370W, three-phase inverter with 150% overload capacity. If you change the MOSFET, the value of C_4 has to change according to the total gate charge plus the output capacitance of Q_3, which is much lower and, in fact, negligible. Q_1 amplifies the capacitor current, so C_4 is proportional to $Q_1 \times h_{FE1}$. Make C_4's value no higher than necessary, because the base current in Q_1 would be too high. To obtain all the speed advantages of the circuit, the PWM signal should be able to quickly drive Q_3. If necessary, you can use a buffer circuit (Figure 2). You can drive the circuit with a single CMOS gate. The circuit in Figure 1 is probably the simplest high-voltage inverter you can design. It has served in thousands of three-phase motor drives from 0.37 to 0.75 kW.

Check out our Best of Design Ideas section!