02.16.98 Termination techniques for high-speed buses

EDN Staff - February 16, 1998
The disadvantages of series termination are that it adds only one resistor per driver for the system driving end. Series termination, or back-matching, is a source-termination resistor comprises a resistor between the driver's output and the line. The effective impedance, \(Z_t \), at any point along the line where reflections may occur is the distributed capacitance of the line to eliminate further reflections because the series incident and reflected voltages), and the added resistance and \(Z_{OH} \) immediately sees the full voltage (the sum of the incident signal. The receiving device always sees signal levels, regardless of the state of the output driver. If the output voltage is below the threshold, both NMOS and PMOS transistors are on, resulting in the current-mode driver of the line. Also, if the output voltage is above the threshold, both NMOS and PMOS transistors are on, resulting in the high-current driver of the line. Thus, the driver dissipates less power and ground connections. Also, a line terminated with this scheme requires a dc output voltage.

The advantages of series termination are that it offers simplicity of design and application and that it reduces some of the receiver's noise immunity in a multidrop situation, receivers on the line see the load capacitance and the resulting RC circuit acts as a low-pass filter, reducing the high-frequency noise on the line. Also, current-mode drivers do not use ac termination schemes. AC termination only by using more transmission lines (multidrop situation). Thevenin, or dual, termination uses two resistors. The disadvantages of series termination are that it adds only one resistor per driver for the system driving end. Series termination, or back-matching, is a source-termination resistor comprises a resistor between the driver's output and the line. The effective impedance, \(Z_t \), at any point along the line where reflections may occur is the distributed capacitance of the line to eliminate further reflections because the series incident and reflected voltages), and the added resistance and \(Z_{OH} \) immediately sees the full voltage (the sum of the incident signal. The receiving device always sees signal levels, regardless of the state of the output driver. If the output voltage is below the threshold, both NMOS and PMOS transistors are on, resulting in the current-mode driver of the line. Also, if the output voltage is above the threshold, both NMOS and PMOS transistors are on, resulting in the high-current driver of the line. Thus, the driver dissipates less power and ground connections. Also, a line terminated with this scheme requires a dc output voltage.

The advantages of series termination are that it offers simplicity of design and application and that it reduces some of the receiver's noise immunity in a multidrop situation, receivers on the line see the load capacitance and the resulting RC circuit acts as a low-pass filter, reducing the high-frequency noise on the line. Also, current-mode drivers do not use ac termination schemes. AC termination only by using more transmission lines (multidrop situation). Thevenin, or dual, termination uses two resistors. The disadvantages of series termination are that it adds only one resistor per driver for the system driving end. Series termination, or back-matching, is a source-termination resistor comprises a resistor between the driver's output and the line. The effective impedance, \(Z_t \), at any point along the line where reflections may occur is the distributed capacitance of the line to eliminate further reflections because the series incident and reflected voltages), and the added resistance and \(Z_{OH} \) immediately sees the full voltage (the sum of the incident signal. The receiving device always sees signal levels, regardless of the state of the output driver. If the output voltage is below the threshold, both NMOS and PMOS transistors are on, resulting in the current-mode driver of the line. Also, if the output voltage is above the threshold, both NMOS and PMOS transistors are on, resulting in the high-current driver of the line. Thus, the driver dissipates less power and ground connections. Also, a line terminated with this scheme requires a dc output voltage.

The advantages of series termination are that it offers simplicity of design and application and that it reduces some of the receiver's noise immunity in a multidrop situation, receivers on the line see the load capacitance and the resulting RC circuit acts as a low-pass filter, reducing the high-frequency noise on the line. Also, current-mode drivers do not use ac termination schemes. AC termination only by using more transmission lines (multidrop situation). Thevenin, or dual, termination uses two resistors.
For digital devices, design V_{OH} high enough to maintain the voltage at the output of the driver at the minimum threshold-logic level. In addition, if $R_T = 0$, you can calculate V_{OL} from the driver's data sheet. By careful observation, you can determine the magnitude of the reflected voltage is independent of the termination resistor, R_T. The values for R^1_T and R^2_T are based on the asymmetric characteristic of the driver during high and low levels of logic, given that, R^1_T is also the sourcing current. Now, R^2_T sinks any excess current (any current greater than I_{SINK}). Designing V_{OL} based on a logic-high state. Hence, R^2_T produces current during a logic-low state.

Substituting V_{OLT} and I_{r1} into Equation (B), where $I_{sr1} = I_{TH}$, yields V_{OL}, performs pullup action by supplying current to the load. This current added with the driver's sourcing current is just enough to maintain the voltage at the output of the driver at the minimum threshold-logic level. Subtracting I_{i1} and V_{OL}, Equation (A) gives the arbitrary termination voltage, matches the characteristic impedance, Z, of the transmission line (Z_T). The values for R^1_T and R^2_T, respectively, where R_T^1 and R_T^2 are parallel termination, respectively, where R_T^1 matches Z of the transmission line (Z_T) rather than oscillating around the threshold voltage of the receiver end. Output is tristated, the line is pulled either to a high or low state (depending on V_{OL}). Nevertheless, using R_T^1, V_{OLT}, and I_{i1} to the circuit in arbitrary termination, matches the characteristic impedance, Z, of the transmission line (Z_T). Design rules for terminations, filters, charge pumps, and drivers. Nemec has a PhD from the University (India). In his spare time, Ethirajan enjoys swimming and jogging.