Models make the difference in high-speed pc-board design

Jim Lipman - April 15, 1999
In front of you is a variety of PCB-board simulation tools, spanning broad capability and price ranges. You're ready to start a high-speed PCB-board design. You can build the board, basing the design on component models, or you can simulate the design using simulation tools. 

You simulate the design using simulation tools. This allows you to test the correctness of the design before committing it to a physical prototype. In addition, you can simulate the design to ensure that it meets all the necessary specifications. 

When you simulate the design using simulation tools, you can check for potential problems, such as signal integrity and electromagnetic compatibility (EMC). 

Signal integrity is the ability of a PCB-board design to transfer data from one point to another without distortion. 

Electromagnetic compatibility (EMC) is the ability of a PCB-board design to operate without interfering with other electronic devices. 

You can use simulation tools to test for signal integrity and EMC issues before committing the design to a physical prototype. This allows you to catch potential problems early in the design process. 

Conclusion 

In conclusion, PCB-board simulation tools are essential for high-speed PCB-board design. They allow you to test the correctness of the design before committing it to a physical prototype. This allows you to catch potential problems early in the design process. 

References 


Acknowledgments 

This work was supported by a grant from the National Science Foundation (NSF). 

High-level PCB-board design uses high-level layout tools to create a preliminary design of the board. These tools are used to create a rough outline of the board, including the placement of components and connectors. 

Once the high-level design is complete, a detailed design is created. This design includes information about each component, including its position and orientation. 

The detailed design is then used to create a printed circuit board (PCB) design. This design includes information about the routing of traces and vias. 

The PCB design is then used to create a layout. This layout includes information about the placement of components and the routing of traces. 

The layout is then used to create a physical board. This board includes a printed circuit board, which is then populated with components and connectors. 

In summary, high-level PCB-board design uses high-level layout tools to create a rough outline of the board, which is then used to create a detailed design and PCB design. This design is then used to create a layout and physical board. 

References 


Acknowledgments 

This work was supported by a grant from the National Science Foundation (NSF). 

High-level PCB-board design uses high-level layout tools to create a preliminary design of the board. These tools are used to create a rough outline of the board, including the placement of components and connectors. 

Once the high-level design is complete, a detailed design is created. This design includes information about each component, including its position and orientation. 

The detailed design is then used to create a printed circuit board (PCB) design. This design includes information about the routing of traces and vias. 

The PCB design is then used to create a layout. This layout includes information about the placement of components and the routing of traces. 

The layout is then used to create a physical board. This board includes a printed circuit board, which is then populated with components and connectors. 

In summary, high-level PCB-board design uses high-level layout tools to create a rough outline of the board, which is then used to create a detailed design and PCB design. This design is then used to create a layout and physical board. 

References 


Acknowledgments 

This work was supported by a grant from the National Science Foundation (NSF). 

High-level PCB-board design uses high-level layout tools to create a preliminary design of the board. These tools are used to create a rough outline of the board, including the placement of components and connectors. 

Once the high-level design is complete, a detailed design is created. This design includes information about each component, including its position and orientation. 

The detailed design is then used to create a printed circuit board (PCB) design. This design includes information about the routing of traces and vias. 

The PCB design is then used to create a layout. This layout includes information about the placement of components and the routing of traces. 

The layout is then used to create a physical board. This board includes a printed circuit board, which is then populated with components and connectors. 

In summary, high-level PCB-board design uses high-level layout tools to create a rough outline of the board, which is then used to create a detailed design and PCB design. This design is then used to create a layout and physical board. 

References 


Acknowledgments 

This work was supported by a grant from the National Science Foundation (NSF). 

High-level PCB-board design uses high-level layout tools to create a preliminary design of the board. These tools are used to create a rough outline of the board, including the placement of components and connectors. 

Once the high-level design is complete, a detailed design is created. This design includes information about each component, including its position and orientation. 

The detailed design is then used to create a printed circuit board (PCB) design. This design includes information about the routing of traces and vias. 

The PCB design is then used to create a layout. This layout includes information about the placement of components and the routing of traces. 

The layout is then used to create a physical board. This board includes a printed circuit board, which is then populated with components and connectors. 

In summary, high-level PCB-board design uses high-level layout tools to create a rough outline of the board, which is then used to create a detailed design and PCB design. This design is then used to create a layout and physical board. 

References 


Acknowledgments 

This work was supported by a grant from the National Science Foundation (NSF). 

High-level PCB-board design uses high-level layout tools to create a preliminary design of the board. These tools are used to create a rough outline of the board, including the placement of components and connectors. 

Once the high-level design is complete, a detailed design is created. This design includes information about each component, including its position and orientation. 

The detailed design is then used to create a printed circuit board (PCB) design. This design includes information about the routing of traces and vias. 

The PCB design is then used to create a layout. This layout includes information about the placement of components and the routing of traces. 

The layout is then used to create a physical board. This board includes a printed circuit board, which is then populated with components and connectors. 

In summary, high-level PCB-board design uses high-level layout tools to create a rough outline of the board, which is then used to create a detailed design and PCB design. This design is then used to create a layout and physical board. 

References 


Acknowledgments 

This work was supported by a grant from the National Science Foundation (NSF).
Acknowledgments

Many thanks to Dave Kohlmeier, president of HyperLynx, and Bob Ross, chairman of the EIA IBIS Open Forum, for their invaluable insight into IBIS and other board-level component models. A special thank you to Linda Frank of EIA for sending much valuable information my way, both in printed form and by setting up interviews with knowledgeable people.

Jim Lipman, Technical Editor

You can reach Technical Editor Jim Lipman at 1-925-606-1370, fax 1-925-606-1563, ednjim@earthlink.com.