A high-power offline supply is nothing more than a half- or full-bridge dc/dc converter. Rectifying the ac line yields a dc voltage that feeds the converter. At power-supply turn-on, the bulk capacitor of the uncontrolled rectifier is completely discharged. It results in a huge charging current for a high instantaneous line voltage because the discharged bulk capacitor temporarily short-circuits the diodes of the rectifier stage. The high inrush current can trigger a mains circuit breaker, burn a fuse, or even destroy a power supply’s rectifier diodes unless you take precautions. The circuit in Figure 1 limits the inrush current.

At turn-on, if the instantaneous rectified ac-line voltage, V_{ACR}, is greater than approximately 10V, Point A in Figure 2, MOSFET Q_2 turns on, forcing thyristor Q_1 off. In this situation, a little current flows through R_1 and Q_2, injecting a small charge into bulk capacitor C_O, Path A to B in Figure 2.
When \(V_{ACR} - V_O \leq 8\text{V} \) or so, where \(V_O \) is the output voltage, \(Q_2 \) is off, letting \(Q_1 \) conduct. In this situation, the bulk capacitor receives the necessary charge through \(Q_1 \), Path B to C in Figure 2, to match \(V_O \) to \(V_{ACR} \). After this point, \(V_{ACR} \) falls below \(V_O \), and the bulk capacitor alone must support any power the dc/dc converter demands until \(V_{ACR} - V_O \geq 5\text{V} \) or so, Path C to D in Figure 2. At Point D, \(V_{ACR} - V_O \approx 5\text{V} \) and thyristor \(Q_1 \) triggers, which conducts the capacitor’s charge current and the current the dc/dc converter demands until \(V_{ACR} \) matches the sinusoidal peak at Point E.

When \(V_{ACR} \) falls, thyristor \(Q_1 \) cuts off, and the bulk capacitor alone feeds the dc/dc converter. The thyristor conducts again when \(V_{ACR} \) matches \(V_O \) to the sinusoidal peak. This process then repeats. Use a nonsensitive gate thyristor with a breakdown voltage of at least 400V for an ac voltage of 220V rms (root mean square) and with twice the rms-current rating of the rectifier diodes.

This circuit uses a TYN610 thyristor. You can calculate the value of \(R_1 \) using \(R_1 = \frac{6.8 - V_{GT}}{I_{GT} - 20^\circ} \), where \(V_{GT} \) is the minimum gate-cathode voltage necessary to produce the gate-trigger current for \(Q_1 \) and \(I_{GT} \) is the minimum gate current to trigger \(Q_1 \) down to \(-20^\circ\). The NTD4815NHG MOSFET is suitable for this circuit. A MOSFET with a different threshold voltage may require different values for \(R_2 \) and \(R_3 \).