Using CMOS gates to generate pulses sometimes causes timing uncertainty due to gate-threshold variations. For accurate pulse widths, you can use BJTs (bipolar-junction transistors). Basing the design on current comparison allows the circuits to operate at low voltages. Proper clamping of the timing capacitor avoids pulse shortening with increased repetition frequency. These circuits work with somewhat less accuracy at supply voltages lower than 5V.

The heart of this design is a current mirror using modern dual transistors. Process improvements have made many ordinary dual transistors inherently well-matched. Testing a statistically significant sample of PMBT856 devices typically yields a better-than-1-mV match and no mismatches at voltages greater than 2 mV. As has been true for decades, PNP-transistor pairs are better matched than NPN transistors. Testing PMBT3904 devices yields 2-mV matches, with none worse than 3 mV. The packages measure approximately 2 mm on a side, which gives good thermal coupling between the pair. A current mirror with devices having 2-mV mismatch has 8% error. Devices with 3-mV mismatch yield 12% current error. Even with these errors, the circuit makes pulses that are more predictable than those that CMOS devices make.

Figure 1 depicts a simple implementation of a current-mirror pulse generator. It provides good performance over a 0 to 100°C temperature range (**Figure 2**). The closely spaced traces in the waveforms of these circuits are the 0 and 100°C outputs. Source V₂ produces a 40-kHz square wave with a 33% duty cycle. The negative transition of this wave produces a peak current of 4 mA in timing capacitor C₁. A time constant of 4.7 μsec is set with the value of resistor R₁. The timing current of C₁ and R₁ passes through diode-connected transistor Q₁, which, being connected in parallel with the base-emitter junction of Q₂, forms a current mirror that replicates in Q₂ the timing current in C₁ and R₁. Because the base-to-emitter-voltage-to-emitter-current curves of Q₁ and Q₂ match and Q₁ and Q₂ are at the same temperature, Q₂ current matches Q₁ current. A quiescent current of about 0.85 mA is set in R₃. When the timing pulse increases Q₂’s current to exceed R₃’s quiescent current, Q₃ lacks base current and turns off, initiating a negative pulse across load resistor R₄.
When the timing current decays below the quiescent current of R₄, base current flows into Q₃, turning it on and terminating the pulse on R₄. Q₂ saturates early in this pulse and becomes less saturated as the timing current decays.

When V₂ transitions positive, it drives the bulk of its current into D₁, yielding a short recovery time constant. D₁ ceases to conduct at one diode drop above V₁'s supply voltage, so the recovery tail from that diode drop to the quiescent base voltage of Q₁ depends on the current decay in R₁, which is a longer time constant. This simple circuit is stable, varying less than 4% over 100°C.

Although stable, this circuit does not provide high-speed operation. In the circuit's quiescent state, there is no current in either Q₁ or Q₂, making for a low gain bandwidth. Also, Q₃ is in saturation, delaying the initial fall of the pulse across R₄ because the free carriers must leave the base region. Q₂ also saturates during the pulse, delaying the rise at the end of the pulse.

Figure 3 depicts an improved current-mirror pulse generator. In this circuit, the operation of C₁, R₁, and D₁ follows that of Figure 1. Changing D₁ to a Schottky diode reduces the recovery-tail voltage that R₁ must dissipate. Add R₂ to draw a keep-alive current of 100 μA through Q₁ and Q₂, speeding turn-on. These keep-alive currents need not affect the timing. You can cancel out their effect with a slight reduction in the value of R₃. Fitting Q₁ and Q₂ with Schottky clamps D₂ and D₃, respectively, keeps the transistors out of saturation. These changes improve high-speed performance (Figure 4).
Although improved, the circuit still relies on D₁ for the final tail of recovery. To eliminate this problem, you can replace D₁ with a fourth transistor, Q₄ (Figure 5). Because transistors Q₁ and Q₂ are slightly conducting, a voltage one diode drop below that of supply V₁ is always present at their bases. You filter this voltage with R₅ and C₂ and provide it as a bias to the base of Q₄. This step keeps Q₄ nearer the threshold of conduction than would a diode to supply V₁. When source V₂ changes to a negative state, Q₄ is fully off and draws no current. When V₂ changes to a positive state, the emitter of Q₄ conducts at voltages above V₁ to catch the recovery transition, further reducing the recovery-tail amplitude.

R₆ may be used to limit Q₄’s base current, but its omission is acceptable if source V₁ has sufficient output resistance. It may be destructive to apply source V₂ swings large enough to cause excess reverse voltage across the Q₄ base-emitter junction. Q₃ and Q₄ can share the same package. These additions further improve the pulse generator’s high-speed performance (Figure 6).