Simple sawtooth generator operates at high frequency

Luca Bruno, IIS Henseemberger Monza, Lissone, Italy - March 15, 2012

Pulse-width-modulation signal-generator circuits often use an analog sawtooth-oscillator function, but it also can be useful in other applications. The inexpensive sawtooth generator in Figure 1 suits use in low-power applications operating at frequencies as high as 10 MHz and beyond and those in which ramp linearity and frequency accuracy are not prominent concerns.

The circuit employs a single Schmitt-trigger inverter, which acts as a modified astable multivibrator. The output waveform is the voltage across timing capacitor C_T, which ramps between the lower and the upper threshold voltages of the inverter. Charging the $R_T C_T$ network at constant voltage causes the ramp, so its response is exponential, approximately linear only for the initial part of the exponential rise.

A simple trick to improve ramp linearity is to charge the $R_T C_T$ network with a higher-voltage source. Capacitor C_1, which has a value that is at least 10 times greater than that of C_T, acts as a charge pump. When the gate output is low during the falling edge of the sawtooth, capacitor C_1 quickly charges through diode D_1 to V_{CC} minus the forward voltage of D_1. Meanwhile, capacitor C_T discharges quickly through diode D_2.

When the falling C_T voltage reaches the Schmitt trigger’s lower trip point, V_{T-}, the gate output returns high. The charge on C_1 drives the cathode of D_1 to the sum of the voltage of capacitor C_1 and the gate’s high output voltage. D_1 becomes reverse-biased, and the $R_T C_T$ network begins to charge to the voltage on C_1, along with the gate’s high output voltage. When C_T reaches the Schmitt trigger’s upper trip point, V_{T+}, the gate’s output returns low, and the cycle repeats.

Ramp linearity is proportional to the sum of the V_{CC} and V_{DD} supply voltages. Because V_{DD} is fixed at 5V, you can improve ramp linearity if V_{CC} can assume a value higher than that of the inverter. You can estimate the ramp’s nonlinearity error using the following equation:
where $E_{NL\%}$ is the percentage of nonlinearity error, M_i is the initial slope of the ramp, and M_f is the final slope of the ramp, and

$$E_{NL\%}=\left(\frac{M_f-M_i}{M_i}\right)100,$$

where V_F is the forward-voltage drop across D_1.

The R_tC_T time constant sets the frequency, $F_{O\ast}$, of the sawtooth signal. You can estimate the frequency by applying a simple model to the circuit, which neglects the discharge time of C_t and any discharge of C_1, yielding the following equation:

$$F_{O\ast}=\frac{1}{KR_tC_T},$$

where K is a constant, which the following equation defines:

$$K=\ln\left(\frac{V_{CC}+V_{DD}-V_F-V_T}{V_{CC}+V_{DD}-V_F-V_T}\right).$$

By simulating the circuit with $C_t=100$ pF and $R_t=2.2$ kΩ, which agree with the values that the equations theoretically calculated, you can obtain ramp nonlinearity errors of 28% with both V_{CC} and V_{DD} equal to 5V, 18% with V_{CC} of 10V and V_{DD} of 5V, and 14% with V_{CC} of 15V and V_{DD} of 5V.

The breadboarded circuit has $V_{DD}=V_{CC}=5V$, $C_T=100$ pF, and $R_T=2.2$ kΩ. IC_1 is a standard dual-in-line, eight-pin 74HC14, which has a maximum propagation delay of 15 nsec versus 4.4 nsec for the SN74LVC1G14 inverter with a V_{DD} of 5V. The frequency is approximately 12.7 MHz.

C_T should be a low-leakage film capacitor, and its value should be kept low to reduce its charging and discharging of a large amount of energy. Select C_T with a large enough value compared with the gate’s input capacitance and unwanted stray capacitances so that they do not introduce a significant error. Select R_T with a small enough value that the load impedance, gate input, and stray capacitances do not introduce significant error. You can use any CMOS Schmitt-trigger inverter to test the circuit. To improve frequency accuracy, however, you should use a fast logic family with low propagation delay and high output current, such as the single-gate SN74LVC1G14 from Texas Instruments.

You should measure the threshold trigger voltages, especially V_{T-}, directly from the circuit under test before using the preceding equations. Quickly discharging C_t to ground through a finite-propagation-delay inverter causes the lower limit of the ramp to reset below the lower threshold, V_{T-}. You can compensate for the resulting error if you use the measured value of V_{T-}, which takes this effect into account.