Cell-aware ATPG test methods improve test quality

Martin Rowe - June 01, 2012

Traditional IC pattern-generation methods focus on detecting defects at gate terminals or at interconnects. Unfortunately, a significant population of defects may occur within an IC's gates, or cells. Many internal defects in cells can be detected with traditional test methods, but some require a unique set of stimulus to excite and observe the defect. A cell-aware ATPG (automatic test pattern generation) method performs a characterization of the library cell's physical design to produce a set of UDFMs (user-defined fault models). Thus, the actual cell-internal physical characteristics are used to define and target faults.

In addition to explaining how cell-aware ATPG works, I'll also use published simulation results from two major IC companies to highlight the test method. Production silicon test results using cell-aware UDFM have shown notable improvement in DPM (defects-per-million) beyond what stuck-at and transition patterns detect. As a result of this significant impact in DPM, cell-aware UDFM is beginning to get a lot of attention in the industry.

A brief history of IC test

"Defects" are the actual problems or production issues that cause an IC not to function properly. "Faults" are models that try to represent defects with simple properties that correlate to defects and are easy for ATPG tools to use.

When ICs were first developed, their functions were fairly simple, and tests simply checked the IC's functional operation. Someone would design a "functional test" that checked that the IC functioned as intended. As IC technology advanced, it became impractical for an engineer to manually create a thorough functional test for the device. Increasing sequential logic such as flops and latches within ICs further complicated functional test. It could take many tens of thousands of clock cycles to propagate data at the IC's input through the sequential logic. As a result, it became almost impossible to create a functional test that could execute in a reasonable time and provide a high level of detection for all possible defects.

The solution was to implement scan DFT (design for test) structures within the device. Scan logic essentially turns sequential logic into shift registers, which are control-and-observe points that a tester can load and observe. The remaining test problem is the combinational logic between the sequential logic. Thus, the entire design is turned into many sets of small combinational logic
surrounded by virtual control-and-observe points. This situation lends itself to automation using scan ATPG tools. Scan testing is considered a "structural test" because the logic gate segments are tested without specific tests of the intended function of the IC.

ATPG automation circumvents the need for detailed knowledge of the IC design. The scan structure also produces very high defect detection. Standard scan testing is based on a stuck-at fault model that considers a potential stuck-at-0 and stuck-at-1 fault at every gate terminal. The stuck-at fault model verifies that gate terminals are not "stuck" at logic 0 or logic 1 states.

Somewhere between the times when 130 nm and 90 nm process technologies were developed, new timing-related defects occurred that demanded special at-speed tests. One type of at-speed scan test, called transition patterns, was used to target and detect the timing-related defects. Like stuck-at scan tests, transition tests use scan cells as control-and-observe points. After a transition test loads the scan cells, however, it puts the IC in functional mode and applies two or more at-speed clock pulses.

So stuck-at and transition scan tests are the foundation of most production test and new test methods; they can be automated within ATPG tools and achieve high test coverage because of their structural nature. In recent years, newer scan tests were introduced to industry to target defects that escape stuck-at and transition tests. Some examples are timing-aware ATPG to detect small delay defects, deterministic bridge, multiple detect, hold-time, and other ATPG methods (Ref. 1). Each provides some amount of improved defect detection.

All of these scan test methods use fault models that define fault sites at the IC gate boundary. Stuck-at-fault models, however, also detect the majority of production defects such as bridges, opens, and even many defects within the gates. With more recent fabrication technologies, the population of defects occurring within cells is significant, perhaps amounting to roughly 50% of all defects (Ref. 2). Thus, it is important to ensure that you properly define fault models that target these "cell-internal" defects.

Cell-aware ATPG

To target the cell-internal defects, test engineers can now use the physical design of gate cells to drive ATPG. This involves performing a library characterization to determine where defects can occur and how they would affect the operation of each cell. The result of the characterization is a UDFM that describes all the cell inputs and responses necessary to detect the characterized defects. A cell-aware UDFM file would be produced for a physical library for a particular technology. Then, any design using that technology library just needs the corresponding cell-aware UDFM file for cell-aware ATPG.

UFDM is a term used to describe an ATPG tool capability that lets you custom-define fault models. You might want to use a UDFM for ATPG if there is a particular type of pattern that you want to apply to a library cell, instance, or between instances. The definition of the UDFM is similar to stuck-at and transition patterns. You state the values at the cell or instance inputs and what the expected response is for any number of desired cycles. Once ATPG loads your UDFM file, it can target the custom-defined faults. UDFM provides the framework for many types of custom fault types.

Cell-aware characterization flow

The first step in creating cell-aware tests is to characterize the cells within a technology library. First, perform extraction on the physical cell layout library. Then, use the parasitic capacitances and
resistances to locate potential sites for bridges and opens. Capacitors represent potential bridges and resistors potential opens. Then you can define the type of defects you want to model. For example, a basic hard short can be modeled by a 1-Ω resistive bridge at the capacitor locations. Studies have shown value in modeling several resistive bridge values (Refs. 3, 4).

Next, you perform an analog-fault simulation with the desired defects, such as a 1-Ω bridge. The simulation is performed on all possible input combinations with one defect site at a time. The results are compared to the defect-free responses. If any of the responses are different than the defect free case, then that sequence is said to detect the particular defect. Once you perform the analog simulation for all cell-input sequences, for all defects being modeled, and for all cells in the library, you will have a defect matrix. Finally, use the defect matrix to generate the actual cell-aware UDFM file used by ATPG. Figure 1 shows the cell-aware characterization and ATPG flow.

Cell-aware ATPG makes a difference

Why is cell-aware ATPG necessary for finding defects that stuck-at and transition patterns presumably miss if production tests based on stuck-at and transition have been effective for many years? The need for cell-aware ATPG arises from the increased use of complex cells and the growing distribution of defects occurring within those cells.

Many library cells won't see any advantage of performing cell-aware ATPG compared to normal stuck or transition ATPG. For example, a buffer, AND gate, or OR gate need no special inputs to detect cell-internal defects. Consider a 3:1 MUX gate. Table 1 shows the logic table for the MUX. These are the values that are needed to detect all stuck-at faults (stuck-at 1 and 0 at each cell boundary pin).

<table>
<thead>
<tr>
<th>S0</th>
<th>S1</th>
<th>D0</th>
<th>D1</th>
<th>D2</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1. Logic table for 3:1 MUX.

The logical view that the ATPG uses is shown in Figure 2 (top), along with the physical layout of the
cell (bottom). Notice that when looking at the layout, you see a bridge at location R4 could cause a short from S1 to D2. If a value on D2 dominates over S1 in the presence of a bridge then the logic test patterns above might not detect the bridge at R4.

Figure 2. A 3:1 MUX logical view (top) and layout (bottom) shows a potential bridge defect. Click on each image to enlarge

The pattern set in Table 1 will achieve 100% stuck-at coverage for the MUX. In actuality, it doesn’t ensure that R4 or several other cell-internal bridges are detected. In this case, the patterns in Table 2 would be needed to detect the R4 bridge. Other complex gates would have similar situations.

Industrial results

Several IC companies have used cell-aware ATPG to improve defect detection. To evaluate the potential improvements, look at the difference in fault simulation of the library cells for cell-internal defects compared to stuck-at patterns. NXP Semiconductor used a cell-aware UDFM tool to perform cell-library characterization and report expected cell-internal detection improvement (Refs. 3, 4). Published results can help you determine whether to model hard bridges such as a 1-Ω resistance or a variety of bridge values (Ref. 4). Cell-aware fault simulations on the 1-Ω bridge case showed an average of 1.2% cell-internal fault coverage improvement compared to stuck-at tests for ten designs.

Bridges are the most popular type of modeled defect, but there are many types of defects that you can model using the cell-aware characterization. Another defect which some users are modeling is the internal opens defect (Ref. 4).

AMD published test results based on applying cell-aware patterns to 600,000 ICs using a 45-nm process (Ref. 5). The results showed that cell-aware detected defects in 32 devices that passed stuck-at and transition patterns. That correlates to a 55 DPM improvement, which is quite significant for many production environments. More significant DPM improvements have been observed on a 32 nm process IC using slow speed and at-speed cell-aware patterns.
Choosing the best tests

With cell-aware and other types of fault models and test types, you may have trouble deciding which and how much of each should to use in production. Most IC test sets have stuck-at and transition patterns as a baseline. There are a few methods for choosing an effective pattern set. Effective and efficient production results are dependent on good data about the defect distribution and effectiveness of tests. Often such data is not clear since defect distributions vary with technology node, operational frequency, slack margins, DFM rules, and more.

Here are two methods for determining an effective test set. Each requires some investment to apply the tests and determine their value.

Using field returns

Field returns are devices that pass production tests, are shipped as functional, but later fail. If, however, you have such a population of devices, then they are useful for finding the value of additional tests. As a first step, retest the parts to ensure that they didn’t break after shipment.

You can apply a full set of tests for any type of potentially valuable test pattern. Then you use the percent detection and pattern set size to equate a relative value of the test type. For example, if you have 300 field returns from a production of 100,000 parts then detecting 50 devices with cell-aware ATPG would imply you could improve DPM by 500 DPM if cell-aware ATPG was part of production test. You can use a similar approach if you have a thorough system-level test that finds defective parts that passed production test.

Adaptive tests for production

Another approach is to add a set of additional patterns to the existing stuck-at and transition pattern sets. Often, there is not much spare room to apply new pattern sets in production. The additional patterns need not be complete sets. You can add 1000 patterns for each pattern type that you are interested in. After some volume of production test, you can observe the number of unique detects from each of your additional patterns. These results can be used to increase the pattern types that are detecting more defects and decrease the size of less effective patterns. Data from these tests gives you some insight to the defect distributions based on the DPM detection of tests and their calculated test coverage. From that, you can extrapolate the value of a full pattern set or the detection value of using a smaller pattern set.

The test pattern types that have shown the most promise beyond stuck-at and transition patterns are timing-aware and cell-aware. Gate exhaustive tests apply every combination of inputs to each cell. They have good detection but are unreasonably large pattern sets. Cell-aware is a subset of gate exhaustive patterns that only include stimulus combinations that can cause the modeled defects to

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>-</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Cell-aware values necessary to detect a bridge at R4.
be detected.

Conclusion

Traditional fault models ensure that the periphery of standard cells and the interconnections between them are fully tested, but they can miss some bridging or open defects internal to the cells. Advanced process nodes introduce a variety of new failure modes that need addressing in IC testing.

The new cell-aware ATPG flow allows test engineers to target subtle shorts and open defects internal to standard cells that are not adequately detected with the standard stuck-at or transition fault models. Cell-aware testing is proven to increase the quality of manufacturing test by providing higher defect coverage and lower DPM.

References

Ron Press is the technical marketing manager of the Design for Test products at Mentor Graphics Corp. The 25-year veteran of the test and DFT industry has presented seminars on DFT and test throughout the world. Mr. Press co-authored a patent on clock switching and reduced pin count testing and received the Raytheon Company inventors award. Ron has published dozens of papers in the field of test and is a member of the International Test Conference (ITC) Steering Committee. Ron earned his BSEE from the University of Massachusetts.

E-mail: ron_press@mentor.com.