PCB layout considerations for non-isolated switching power supplies

Henry J. Zhang, Applications Engineering Manager, Power Products, Linear Technology Corp. - July 20, 2012

Introduction
The best news when you power up a prototype supply board for the very first time is when it not only works, but also runs quiet and cool. Unfortunately, this does not always happen.

A common problem of switching power supplies is "unstable" switching waveforms. Sometimes, waveform jittering is so pronounced that audible noise can be heard from the magnetic components. If the problem is related to the printed circuit board (PCB) layout, identifying the cause can be difficult. This is why proper PCB layout at the early stage of a switching supply design is very critical. Its importance cannot be overstated.

The power supply designer is the person who best understands the technical details and functional requirements of the supply within the final product. He or she should work closely with the PCB layout designer on the critical supply layout from the beginning.

A good layout design optimizes supply efficiency, alleviates thermal stress, and most importantly, minimizes the noise and interactions among traces and components. To achieve these, it is important for the designer to understand the current conduction paths and signal flows in the switching power supply. The following discussion presents design considerations for a proper layout design for non-isolated switching power supplies.

PLAN OF THE LAYOUT
Location of the Power Supply in System Board
For the embedded DC/DC supply on a large system board, the supply output should be located close to the load devices in order to minimize the interconnection impedance and the conduction voltage drop across the PCB traces to achieve best voltage regulation, load transient response and system efficiency. If forced-air cooling is available, the supply should also be located close to the cooling fan or have good air flow to limit the thermal stress.

In addition, the large passive components such as inductors and electrolytic capacitors should not block the air flow to the low profile, surface mount semiconductor components such as power MOSFETs, PWM controller, etc. To prevent the switching noise from upsetting other analog signals in the system, avoid routing sensitive signal traces underneath the supply if possible. Otherwise, an internal ground plane between the power supply layer and small signal layer is needed for shielding.

It is necessary to point out that this power supply location and board real estate planning should be done at the early design/planning stage of the system. Unfortunately, sometimes people focus on other more "important" or "exciting" circuits on the big system board first. If power management/supply is the last thought and is relegated to whatever space is left on the board, this
Placement of Layers

On a multilayer PCB board, it is highly desirable to place the DC ground or DC input or output voltage layers between the high current power component layer and the sensitive small signal trace layer. The ground and/or DC voltage layers provide AC grounds to shield the small signal traces from noisy power traces and power components.

As a general rule, the ground or DC voltage planes of a multilayer PCB should not be segmented. If the segmentation is unavoidable, the number and length of traces in these planes must be minimized. The traces should also be routed in the same direction as the high current flow direction to minimize the impact.

Figures 1a and 1c provide examples of the undesired layer arrangement of the 6-layer and 4-layer PCB boards for switching power supply. In these examples, the small signal layer is sandwiched between the high current power layer and the ground layer. These configurations increase the capacitive noise coupling between the high current/voltage power layer and small analog signal layer. To minimize the noise coupling, Figures 1b and 1d show examples of desired layer arrangement for 4-layer and 6-layer PCB designs.

Figure 1. Desired and Undesired Layer Arrangement of 6-Layer and 4-Layer PCBs

In these two examples, the small signal layer is shielded by the ground layer(s). It is important to always have a ground layer next to the outside power stage layer. Finally, it is also desirable to have thick copper for the external high current power layers to minimize the PCB conduction loss and thermal impedance.

POWER STAGE COMPONENT LAYOUT

A switching power supply circuit can be divided into the power stage circuit and the small signal control circuit. The power stage circuit includes the components that conduct high current. In general, these components should be placed first. The small signal control circuitry is subsequently...
placed in specific spot in the layout. In this section, we will discuss the layout of power stage components.

Continuous and Pulsating Current Paths - Minimize Inductance in High di/dt Loop (Hot Loop)

The large current traces should be short and wide to minimize PCB inductance, resistance and voltage drop. This is especially critical for the traces with high di/dt pulsating current flow. Figure 2 identifies the continuous current and pulsating current paths in a synchronous buck converter.

![Figure 2. Continuous and Pulsating Current Paths of a Synchronous Buck Converter](image)

The solid line represents the continuous current paths, and the dashed line represents the pulsating (switching) current paths. The pulsating current paths include the traces connected to the input decoupling ceramic capacitor, C_{HF}, the top control FET, Q_T, the bottom synchronous FET, Q_B, and its optional paralleled Schottky diode.

Figure 3a shows the parasitic PCB inductors in these high di/dt current paths. Due to the parasitic inductance, the pulsating current paths not only radiate magnetic fields, but also generate high voltage ringing and spikes across the PCB traces and MOSFETs. To minimize the PCB inductance, this pulsating current loop (hot loop) should be laid out so that it has a minimum circumference and is composed of traces that are short and wide.
Figure 3. Minimize the High di/dt Loop Area in the Synchronous Buck Converter. (a) High di/dt loop (Hot Loop) and its Parasitic PCB Inductors, (b) Layout Example
The high-frequency decoupling capacitor, \(C_{\text{HF}} \), should be a 0.1\(\mu \)F to 10\(\mu \)F, X5R or X7R dielectric ceramic capacitor with very low ESL and ESR. Higher-capacitance dielectrics (such as Y5V) can allow a large reduction in capacitance over voltage and temperature. Therefore, these kinds of capacitors are not preferred for \(C_{\text{HF}} \).

Figure 3b provides a layout example of the critical pulsating current loop (hot loop) in the buck converter. To limited resistive voltage drops and the number of vias, power components should be placed on the same side of board, with power traces routed on the same layer. When it becomes necessary to route a power trace to another layer, choose a trace in the continuous current paths. When vias are used to connect PCB layers in the high current loop, multiple vias should be used to minimize via impedance.

Similarly, Figure 4 shows the continuous and pulsating current loops (hot loop) in the boost converter. In this case, the high frequency ceramic capacitor, \(C_{\text{HF}} \), should be placed on the output side close to the MOSFET, \(Q_B \), and boost diode, D.

![Figure 4. Continuous and Pulsating Current Paths of a Boost Converter](image)

The loop formed by switch, \(Q_B \), rectifier diode, D, and high frequency output capacitor, \(C_{\text{HF}} \), must be minimized. Figure 5 shows the layout example of the pulsating current loop in the boost converter.
Figure 5. Minimize the High di/dt Loop Area in the Boost Converter. (a) High di/dt Loop (Hot Loop) and its Parasitic PCB Inductors, (b) Layout Example

To emphasize the importance of the decoupling capacitor C_{HF}, Figures 6 and 7 provide an actual example of a synchronous buck circuit. Figure 6a shows the layout of a dual phase, 12V$_{IN}$ to 2.5V$_{OUT}$/30A max, synchronous buck supply using the LTC3729 2-phase, single V$_{OUT}$ controller IC. As shown in Figure 6a, the switching nodes SW1 and SW2 and output inductor current iLF1 waveforms are stable at no load. But if the load current increases to above 13A, the SW1 node waveform starts missing cycles. The problem becomes even worse with higher load current.
Figure 6. An Example of a 2-Phase, 2.5V/30A Output Buck Converter with Noise Problem. (a) Layout, (b) Switching Waveform at IOUT = 0A, (c) Switching Waveform at IOUT = 13.3A

Figure 7 shows that adding one 1µF high frequency ceramic capacitors on each channel's input side solves the problem. It separates and minimizes the hot loop area of each channel. The switching waveform is stable even with maximum load current up to 30A.
Isolate and Minimize High dv/dt Switching Area

In Figures 2 and 4, the SW node voltage swings between V_{IN} (or V_{OUT}) and ground with a high dv/dt rate. This node is rich in high-frequency noise components and is a strong source of EMI noise. To minimize the coupling capacitance between SW node and other noise-sensitive traces, the SW copper area should be minimized.

Figure 7. Adding Two 1μF High Frequency Input Capacitors Solves the Problem. (a) Layout with Added Capacitors, (b) Switching Waveform at $I_{OUT} = 0A$, (c) Switching Waveform at $I_{OUT} = 30A$
However, on the other hand, to conduct high inductor current and provide a heat sink to the power MOSFET, the SW node PCB area cannot be too small. It is usually preferred to have a ground copper area placed underneath this SW node to provide additional shielding.

Sufficient Copper Area to Limit Power Component Thermal Stress

In a design without external heat sinks for surface mounted power MOSFETs and inductors, it is necessary to have sufficient copper area as a heat sink. For a DC voltage node, such as input/output voltage and power ground, it is desirable to make the copper area as large as possible.

Multiple vias are helpful in further reducing thermal stress. For the high dv/dt SW nodes, the proper size of the SW node copper area is a design trade-off between minimizing the dv/dt related noises and providing good heat sinking capability for the MOSFETs.

Proper Land Pattern of Power Components to Minimize Impedance

It is important to pay attention to the land (or pad) pattern of power components, such as low ESR capacitors, MOSFETs, diodes and inductors. Figures 8a and 8b show examples of undesired and desired power component land patterns, respectively.

![Undesired](image)

(a)
Desired

![Diagram of desired and undesired land patterns for power components.](image)

Figure 8. Desired and Undesired Land Patterns for Power Components. (a) Improper Use of Thermal Relief for the Pads of Power Components, (b) Recommended Land Patterns for Power Components

As shown in Figure 8b, for a decoupling capacitor, the positive and negative via pair should be as close to each other as possible to minimize the PCB effective series inductance (ESL). This is especially effective for capacitors with low ESL. Large valued low ESR capacitors are usually more expensive. Improper land pattern and poor routing can degrade their performance and thus increase overall cost. In general, the desired land patterns reduce the PCB noise, reduce thermal impedance, and minimize trace impedance and voltage drops for the high current components.

One common mistake in high current power component layout is the improper use of thermal relief land patterns, as shown in Figure 8a. Unnecessary use of thermal relief land patterns increases the interconnection impedance of power components. This results in higher power losses and decreases the decoupling effect of low ESR capacitors. If vias are used to conduct high current, sufficient numbers of via must be used to minimize via impedance. Similarly, the thermal relief should not be used for those vias.

Separation of Input Current Paths Among Supplies

Figure 9 shows an application with several onboard switching supplies sharing the same input
voltage rail. When these supplies are not synchronized to each other, it is necessary to separate the input current traces to avoid common impedance noise coupling between different power supplies. It is less critical to have local input decoupling capacitor for each power supply.

Undesired

![Undesired Diagram](image)

Desired

![Desired Diagram](image)

Figure 9. Separate the Input Current Paths Among Supplies

PolyPhase®, Single Output Converter

For a PolyPhase, single output converter, try to have symmetric layout for each phase. This helps to
Layout Design Example - 1.2V/40A Dual Phase Buck Converter

Figure 10 provides a design example of a 4.5V to 14V\textsubscript{IN} to 1.2V/40A max dual phase synchronous buck converter using PolyPhase current mode step-down controller, the LTC3855. Before the start of PCB layout, one good practice is to highlight the schematic traces for the high current traces, the noisy high dv/dt traces and the sensitive small signal traces with different colors, so the PCB designer understands the differences between these traces.

Figure 10. Dual Phase 1.2V/40A Max LTC3855 Buck Converter

Figure 11 shows the power stage layout example of the power component layer of this 1.5V/40A supply. In this figure, the Q\textsubscript{T} is the top side control MOSFET and Q\textsubscript{B} is the bottom side synchronous FET. An optional Q\textsubscript{B} footprint is added for even more output current. A solid power ground plane layer is placed just underneath the power component layer.
CONTROL CIRCUITRY LAYOUT

Location of the Control Circuitry
The control circuitry should be located away from the noisy switching copper areas. It is preferable to have the control circuitry located close to the V_{out^+} side for the buck converter and close to the V_{in^+} side for the boost converter, where the power traces carry continuous current.

If space allows, locate the control IC a small distance (0.5-1”) from the power MOSFETs and inductors, which are noisy and hot. However, if the space constraint forces the controller to be located close to power MOSFETs and inductors, special care must be taken to isolate the control circuitry from power components with ground planes or traces.

Separation of the Signal Ground and Power Ground
The control circuitry should have a separate signal (analog) ground island from the power stage ground. If there are separate signal ground (SGND) and power ground (PGND) pins on the controller,
IC, they should be routed separately. For controller ICs that have integrated MOSFET drivers, the small signal section of the IC pins should use the SGND, as shown in Figure 12.

Figure 12. Decoupling Capacitors of Controller IC and Ground Separation

Only one connection point between the SGND and PGND is required. It is desirable to return the SGND to a clean point of the PGND plane. The two grounds can be done by connecting both ground traces just under the controller IC. Figure 12 shows the preferred ground separation of the LTC3855 supply. In this example, the IC has an exposed GND pad. It should be soldered down to PCB to minimize electrical and thermal impedance. Multiple vias should be placed on this GND pad area.

Decoupling Capacitors for the Controller IC

The decoupling capacitors for the controller IC should be physically close to their pins. To minimize connection impedance, it is preferable to connect the decoupling capacitors directly to the pins without using vias. As shown in Figure 12, the following LTC3855 pins should have their decoupling capacitors closely located: current sensing pins, SENSE+/SENSE-, compensation pin, I_{TH}, signal ground pin, SGND, feedback voltage divider pin, FB, IC V_{CC} voltage pin, INTV$_{\text{CC}}$, and power ground pin, PGND.

Minimize Loop Area and Crosstalk

Separate Noisy Traces and Sensitive Traces
Two or more adjacent conductors can be coupled capacitively. High dv/dt voltage change on one conductor will couple currents to another through the parasitic capacitor. To reduce the noise coupling from the power stage to the control circuitry, it is necessary to keep the noisy switching traces far from the sensitive small signal traces. If possible, route the noisy traces and sensitive traces on different layers, with an internal ground layer for noise shielding.

As to the LTC3855 controller, the following pins have high dv/dt switching voltages: FET driver TG, BG, SW and BOOST. The following pins are connected to the most sensitive small signal nodes: SENSE+/SENSE-, FB, I_{th} and SGND. If these sensitive signal traces are routed close to high dv/dt nodes, the ground traces or a ground layer must be inserted between these signal traces and high dv/dt traces to shield the noise.

Gate Driver Traces

It is desirable to use short and wide traces to route gate drive signals in order to minimize the impedance in gate drive paths. As shown in Figure 13, the top FET driver traces TG and SW should be routed together with minimum loop area to minimize the inductance and high dv/dt noise. Similarly, the bottom FET driver trace BG should be routed close to a PGND trace.

![Figure 13. Gate Driver Trace Routing of the MOSFETs](image)

If a PGND layer is placed under the BG trace, the AC ground return current of the bottom FET will be automatically coupled in a path close to the BG trace. AC current flows where it finds the minimum loop/impedance. In this case, a separate PGND return trace for the bottom gate driver is not required. It is best to minimize the number of layers that the gate driver traces are routed on.
This prevents gate noise from propagating to other layers.

Current Sensing Trace and Voltage Sensing Trace

Of all the small signal traces, current sensing traces are most sensitive to noise. The current sensing signal amplitude is usually less than 100mV, which is comparable to the noise amplitude. In the LTC3855 example, its SENSE+/SENSE- traces should be routed in parallel with minimum spacing (Kelvin sense) to minimize the chance of picking up di/dt-related noise, as shown in Figure 14.

![Figure 14. Kelvin Sensing for Current Sensing (a) RSENSE, and (b) Inductor DCR Sensing](image)

In addition, the filter resistors and capacitor for current sensing traces should be placed as close to the IC pins as possible. This provides the most effective filtering in case noise is injected into the long sense lines. If inductor DCR current sensing is used with an R/C network, the DCR sensing resistor, R, should be close to the inductor, while the DCR sensing capacitor, C, should be close to the IC.

If a via is used in the return path of the trace to SENSE-, this via should not contact another internal V\textsubscript{OUT}+ layer. Otherwise, this via may conduct large V\textsubscript{OUT}+ current and the resulting voltage drop may distort the current sensing signal. Avoid routing the current sensing traces near the noisy switching nodes (TG, BG, SW, BOOST traces). If possible, place the ground layer between the current sensing traces and the layer with power stage traces.
If the controller IC has differential voltage remote sensing pins, use separated traces for the positive and negative remote sensing traces with Kelvin sense connection as well.

Trace Width Selection

Current level and noise sensitivity are unique to specific controller pins. Therefore, specific trace widths need to be selected for different signals. In general, the small signal nets can be narrow and routed with 10 to 15 mil wide traces. The high current nets (gate driving, V_{CC} and PGND) should be routed with short and wide traces. At least 20 mil width is recommended for these nets.

SUMMARY

Power Design Layout Checklist

To summarize the layout design discussion in this article, Table 1 provides a sample checklist of the dual phase LTC3855 supply shown in Figure 10. Using such a checklist will aid the designer to ensure that the result is a well layed out power supply design.

About the author

Henry Zhang is an applications engineering manager for power products at Linear Technology. He received BSEE degree from Zhejiang University, China in 1994 and his MS and Ph.D. degrees in electrical engineering from Virginia Polytechnic Institute and State University, Blacksburg, Virginia in 1998 and 2001, respectively. Henry has worked at Linear Technology for twelve years.