Quasistatic Spice model targets ceramic capacitors with Y5V dielectric

Hugo Coolens, KaHo Sint-Lieven, Ghent, Belgium - August 24, 2012

Ceramic Y5V SMT capacitors have recently become available in values and sizes that were previously available only with electrolytic capacitors. At first glance, they may seem a worthwhile unpolarized alternative to electrolytic capacitors, and they sometimes are. These capacitors, however, have a capacitance that is a function of the applied voltage. Modeling them as ordinary linear capacitors can lead to great discrepancies between simulated and measured—let alone expected—results.

Figure 1 shows some measurements of capacitance as a function of dc voltage on a 10-μF, 25V Y5V 1206 capacitor. **Reference 1** describes a method of modeling nonlinear capacitors using a look-up table. The use of a look-up table, however, adds complexity to the simulation and can lead to convergence problems. If you limit the operating voltage to approximately 80% of the capacitor’s voltage rating, you may find that a simpler quadratic quasistatic model can be sufficient for quickly arriving at a first approximation.
Fitting the measured data of C to $a_0 + (a_1 V_{DC}) + (a_2 V_{DC}^2)$ using quadratic regression yields the coefficients of 8.500065×10^{-6}, -7.445791×10^{-7}, and 1.922001×10^{-8} for a_0, a_1, and a_2, respectively. **Listing 1** shows the conversion from the parameters to the nonlinear-capacitor model in PSpice. You can see the equivalent capacity in PSpice’s graphical postprocessor Probe as $i(c)/(2 \times 3.14159 \times \text{frequency})$.

The differences between the measured values and the quadratic approximation are at worst approximately 20% (**Figure 2**). The relative residues are normally distributed with a mean of 2.5% and a standard deviation of 10%. Those deviations might seem to be a rough approximation for a model, but you must compare them with the normal linear C model, for which the relative error at 50% of the dc-voltage rating is already approximately 300%. Note that in practical applications you must limit the capacitor terminal voltage to no more than 80% of the capacitor rating so that the model almost always gives a better approximation than the worst-case value might suggest.

Listing 1 Conversion Parameters

```plaintext
LISTING 1 CONVERSION PARAMETERS
quadratic y5v-cap model
  .param a0=8.500065u
  .param a1=-744.5791n
  .param a2=19.22001n
  .param valdc=1
  c1 0 cmd [a0]
  vin 0 dc [valdc] ac 1
  .model cmdcap
    (c1=1 vc1=[a1/a0]
     vc2=[a2/a0])
  .ac dec 20 100 100k
  .step lin param valdc 0 25 1
  *display equivalent c as
  i(c)/(2*3.14159*frequency)
  .probe
  .end
```

A simple rectifier setup checks the validity of the model (**Figure 3**). It measures a peak-to-peak ripple voltage of 10.2V (**Figure 4**). Simulating the circuit with the quadratic model in PSpice shows a ripple voltage of 10.4V (**Figure 5**). You don’t need PSpice for this model; Spice 2G6 also has a built-in feature for modeling this type of capacitor. You enter it in this format:

```
c1 2 0 poly 8.500065u
   -744.5791n 19.22001n
```

PSpice no longer has this feature, even though it is said to be Spice 2G6-based.
Note that replacing the capacitor with an ordinary electrolytic that has the same capacitance and voltage rating would reduce the ripple voltage to approximately 5 or 6V. That result is not surprising, but it again shows that you can’t just replace an electrolytic capacitor with a ceramic one of the same capacitance and voltage rating.

References

2. Cain, Jeffrey, PhD, “Comparison of multilayer ceramic and tantalum capacitors,” AVX Corp.

If you liked this feature, and would like to see a weekly or bi-weekly collection of related
features delivered directly to your inbox, sign up for the Design Ideas newsletter here.