Xilinx Announces Defense-Grade 7 Series FPGAs and Zynq-7000 All Programmable SoCs with Fourth Generation Secure Capabilities

Xilinx, Inc. - October 29, 2012

Fail safe capabilities extend Xilinx secure leadership with the industry's only defense-grade FPGAs and SoCs for demanding applications

PR Newswire

SAN JOSE, Calif., Oct. 29, 2012

SAN JOSE, Calif., Oct. 29, 2012 /PRNewswire/ -- Xilinx, Inc. (NASDAQ: XLNX) today announced its fourth generation secure architecture with Information Assurance and Anti-Tamper IP core support for defense-grade 7 series FPGAs and Zynq™-7000 All Programmable SoCs. These unique high reliability, defense-grade devices reduce the risk and cost of deploying the latest Aerospace and Defense (A&D) systems by utilizing off-the-shelf reprogrammable Xilinx® FPGAs and SoCs. Manufactured with state-of-the-art 28nm process technology, all devices are optimized for high performance and the lowest total power. Xilinx defense-grade products are fully pin-compatible to commercial-grade equivalents for low cost prototyping and are offered off-the-shelf.

(Video: http://photos.prnewswire.com/prnh/20121029/SF01231)

(Logo: http://photos.prnewswire.com/prnh/20020822/XLNXLOGO)

Xilinx's more than 20-year legacy working with both government and major defense contractors, combined with Xilinx's fourth generation secure silicon, Information Assurance methodology and
DoD 5000 Series compliant Anti-Tamper Security Monitor IP core (SECMON), forms the basis for Xilinx's 'fail safe heritage'. This fail safe heritage removes any single point of failure in systems that may compromise a mission, a key attribute in assuring secure applications functionality.

"Xilinx is the only major FPGA vendor offering a distinct defense-grade product line with fail safe heritage," said Yousef Khalilollahi, senior director, Aerospace and Defense at Xilinx. "In addition to the secure capabilities, the defense-grade 7 series FPGAs and Zynq-7000 All Programmable SoCs offer mask set control, ruggedized packaging with fully-leaded (Pb) content for harsh environmental operation, full extended temperature range testing, long term availability and anti-counterfeiting features."

Extensive testing and experience from previous generations of devices has resulted in Xilinx's latest defense-grade offering to provide the lowest cost, lowest power and most flexible solution to developers who need to meet the demanding requirements of a variety of applications in military communications, avionics, electronic warfare (EW), Intelligence Surveillance Reconnaissance (ISR) systems and missiles and munitions.

An example of a defense-grade application for the Xilinx 7 series FPGAs and Zynq-7000 All Programmable SoCs for secure communications solutions is a device with Single-chip cryptography (SCC) capability with Security Monitor 3.0 IP core for physical design security. SCC combines the functionality of multiple FPGAs into a single device, enabling A&D product developers to reduce SWaP-C of systems through higher levels of integration. Additionally, the inherent reprogrammability of these devices overcome the limitations of traditional long lead-time ASIC and ASSP approaches by allowing multiple capabilities that have the same hardware configuration. These devices specifically address the demands of modern portable wireless A&D systems that must run on battery power while being absolutely secure.

All Programmable FPGAs, SoCs and Tools

System designers are empowered to maximize system performance, lower power, preserve design flexibility, provide superior programmable systems integration and reduce BOM costs with Xilinx's All Programmable, production available defense-grade FPGAs and SoCs including Virtex®, Kintex™ and Artix™ FPGA families and the Zynq-7000 All Programmable SoCs.

Delivering unchallenged industry leadership in logic, memory, and DSP capacity, 7 series FPGAs with DSP capabilities combine massive DSP processing bandwidth and low power with easy-to-use design flows to insure designs are delivered on-time and on-spect, while providing peak performance, the highest performance DSP at any price to price-optimized performance for volume applications at the right price. And with FPGA co-processing, traditional DSP device acceleration is given an unparalleled performance boost.

System designers can realize a major breakthrough in SoC-level integration with the All Programmable Zynq-7000 devices and gain ASIC levels of performance and power consumption with the flexibility of an FPGA and ease of programming of a microprocessor.

With the Vivado™ Design Suite, Vivado High-Level Synthesis (HLS) accelerates design implementation by enabling C, C++ and SystemC specifications to be directly targeted into Xilinx All Programmable FPGAs, SoCs and 3D ICs without the need to manually create RTL. Advanced algorithms used today in A&D applications, as well as a wide variety of other market applications, are more sophisticated than ever before. Vivado HLS provides system and design architects with a faster and more robust way of delivering quality designs.
Availability

The Xilinx All Programmable families of defense-grade FPGAs and SoCs are available in I-temperature (-40 degrees to +100 degrees C), Q-temperature (-40 degrees to +125 degrees C) and M-temperature (-55 degrees to +125 degrees C). The devices will be in production Q1 of 2013. For more information, visit: http://www.xilinx.com/applications/aerospace-and-defense/index.htm.

About Xilinx

Xilinx is the world's leading provider of All Programmable FPGAs, SoCs and 3D ICs. These industry-leading devices are coupled with a next-generation design environment and IP to serve a broad range of customer needs, from programmable logic to programmable systems integration. For more information, visit www.xilinx.com.

#1283p

Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, Vivado and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Xilinx
Bruce Fienberg
408-879-4631
Bruce.Fienberg@xilinx.com

SOURCE Xilinx, Inc.