A robust scan insertion methodology

Reecha Jajodia and Paridhi Agrawal, Freescale Semiconductor - July 08, 2014

In the modern era, where meeting high performance and low power targets for any complex SoC (System on Chip) is very tough, testing the SoC has become even more challenging. The purpose of several DFT (Design for Testability) tests is to validate that the product hardware contains no manufacturing defects.

Good quality scan testing is a mandatory requirement for qualification of all production devices. With lower technology nodes and increasing design complexity, stitching the flip flops into scan chains to enable DFT ATPG (Automatic Test Pattern Generation)/LBIST (Logic Built in Self Test) testing poses a number of challenges.

On the broader level, there are major challenges during scan insertion including:

1. Increasing the number of clock domains with large number of IPs (Intellectual Properties) operating at different frequencies, integrated in a single SoC.
2. LBIST requirement as a part of safety.
3. Concatenation of scan chains at different levels to enable different modes.
4. Special care-about for connecting scan chains inside Hardened IPs.

Special care must be taken at each level to ensure that scan stitching is robust.

The design components for scan insertion include:

1. EDT (Embedded Deterministic Technology)
2. Lockup Latches
3. LBIST
4. Hard Macros containing scan chains
5. Scan chain bypass wrapper
6. SOG (Sea of gates) flip flops
7. Concat chains block
Here we elaborate on Robust Scan Insertion infrastructure and methodology that takes care of the above mentioned challenges upfront during the design phase.

Issues occurring due to Multiple clock domains

Two best practices that are followed in designs having multiple clock domains are:

a. Flops functioning at different clock domains must be stitched in the separate chains.

 Problem: Clock tree of two separate functional clock domains are built separately. If stitched in a single chain then it can cause hold violations during scan shift.

b. All the flops in the same clock domain must not be stitched into a single chain.

 Problem: Consider a design of 20k flops having 4 clock domains, each consisting of roughly 5k flops. If all the 5k flops in one clock domain are stitched together the chain length becomes 5k resulting in 5k shift cycles required to load the data while testing. Assuming a shift frequency of 50ns will result in 0.25ms for just one period of data shift in. This would highly impact the test time and the overall product cycle time. Thus there is a need to break the chains into smaller groups of flops stitched together to obtain an optimized chain length for the design. Supposing the above design, we would thus need to break a single chain of a clock domain to a figure of about 25 chains leading to a flop count of 200 flops in a single chain. This will lead to a shift time of 200x50ns=10us (<< 0.25ms).

Taking the above solution into consideration, we need 25 Scan INs and 25 Scan out Pads for testing. This will pose another challenge as tester channels (PADs to be used during testing) are limited for DFT testing and required multi-siting during testing. This results in inclusion of EDT in the design (having decompressor at input end and compressor at output end) which has few inputs from PAD (tester channels) and PRPG (Pseudo Random Pattern Generator) which can feed in multiple Scan INs chains in the SOG and similarly can take scan outs from multiple chains of SOG and compress to produce a few outputs to be observed on the tester.

Special care about in EDT

The EDT architecture depends on the ratio of external channels and internal chains and number of clock domains. While generating EDT if it encounters a negative edge triggered flip flop at the start...
of the chain it will insert lockup cells in its logic to avoid DRC (design rule check). With multiple iteration of scan insertion, there is a possibility that the tool puts a positive edge triggered flop instead of the negative edge triggered flop at the start of that chain. Hence the lockup cell introduced in the EDT logic because of first condition holds false in this situation. Similarly, If in the next scan insertion run, the tool puts a negative edge triggered flop instead of a positive flop at the start of the chain, the EDT logic for that chain will not have a lockup cell due to previous iteration where the chain had a positive edge triggered flop at the start. Hence EDT has to be regenerated.

In order to avoid EDT regeneration with every synthesis/scan insertion iteration, the robust scan architecture suggests that the first and the last flop of the scan chain should be positive edge triggered flop.

Constraints and requirements on scan stitching due to LBIST for safety

LBIST is the safety feature provided for in-field testing of the chip. The time provided for this testing (~20ms) is very less as compared to the production test time. Thus it is required that the shift in the LBIST partition of the design should either:

i. Shift at higher frequency: This is not viable since the whole design shifting at high frequency will lead to power related issues.

ii. Having smaller chain lengths: This would reduce the time required for shift during LBIST, significantly reducing test time. But this further complicates the scan insertion by breaking down the chains for LBIST (as less as 50 flops per chain). This chain configuration for scan would in turn need a high compression ratio, not supported by many of the low cost Testers available today. This introduces a component called “concat chains” which is integrated as a part of LBIST controller IP. The primary purpose of this module to concatenate ‘n’ number of smaller LBIST chains to form ‘m’ longer EDT scan chains (m << n) required during ATPG scan. This concatenation is based clock domain wise. Two chains of different clock domains are never concatenated to form EDT chains. This is taken care inside concat block during LBIST controller generation. Fig(2) gives a basic block diagram of the concat block and its integration.

![Figure 2. LBIST Concatenation module](image)

Chain concatenation at different levels
Chain concatenation at different levels and respective care-abouts

With a large number of clock domains in the design, there is a lot of concern related to the clock domain crossing and clock skew.

i. During stitching of flops in a single chain whenever there is clock crossing from +ve edge triggered flop to –ve edge triggered flop, lockup latch must be inserted.

ii. If due to some design constraint, it is required to merge flops of 2 clock domain in a single scan chain, lockup latches must be added.

iii. As discussed above, LBIST chains are concatenated during scan. To make scan robust, the chains with different clock domains cannot be concatenated. This would avoid hold violation during shift due to clock skew.

iv. Inside EDT, at compactor end there is huge combinational logic. So at the output of each scan out coming from EDT to tester PADS, generally a trailing edge flop is introduced to ease timing.

v. In EDT Bypass or single chain mode during BurnIn testing, all the EDT chains are concatenated to form single chain. Thus there is a need to insert Lockup latches in the following given conditions while concatenation in this mode to avoid hold violation:
 1. When flops of different clock domains are concatenated.
 2. When flops of hard macros are concatenated with flops of another hard macro or soft flop irrespective of the clock domain.
Care-abouts for scan chains inside hardened IP during scan insertion

Certain IPs are plugged as hard-macro in the design. There might be in-built scan chains which have fixed length and polarity of flops at start and end of chains. As the DFT engineer cannot tweak anything inside the hard IP, so in order to make these scan chains compatible with scan architecture of the rest of the design, special care is taken inside the SOG for it.

Below are some areas of concern:

- Maximum LBIST chain length is limited by length of scan chain inside hard macro (as hard macro chains cannot be further broken)
- Must comply with EDT requirements i.e. 1st flop of chain should be +ve edge of clock.
- During concatenation of LBIST chains to EDT chains and further concatenation of EDT chains for EDT bypass mode and burnin mode, hold violations should not occur due to clock skew inside hard IP.

Challenges during stitching hard IPs
There are large numbers of hard macros to be stitched along with the SOG.
We have no control over polarity of flops at start and end of hard macro chains.
Being a hardened IP, there might be un-deterministic clock delays (clock skews) in scan path which can cause hold violations while concatenation.

Solutions

1. In order to ensure nothing breaks in scan due to un-certainties in hard-macro, a scan bypass wrapper is implemented over the hard IP, which allows to bypass the hard macro chains during DFT testing.
2. +ve flops and lock up latches are inserted in the scan bypass wrapper in the SOG to make sure nothing breaks during concatenation.
3. While defining the maximum chain length during LBIST controller generation, length of hard macro chains is taken into account.
4. To ensure that no hard macro chains are concatenated with SOG chain, care is taken during LBIST controller generation (which actually concatenates LBIST chains to make EDT chains in side concat block) so that respective chains are treated and concatenated independently of SOG chains.
5. Preferably stitching of hard IP chains are done in RTL to avoid added complexities. LBIST chains are connected to hard macro in RTL itself. It would be good practice to use initial sets of chains for connection in RTL because this would assure that if there is any change in number of chains during design cycle due to change in flop count of any clock domain, the integration of hard macro chains would remain intact.

Figure 4 illustrates one of the types of scan bypass wrapper (scan bypass wrapper consists of logic other than hard marco chain).
Depending on the polarity of the first and last flop of hard macro, input +ve flop, input lockup latch, output +ve flop and output lockup latch is inserted.

The table shown in Figure 5 below states the logic of scan bypass wrapper.

Configuring the scan wrapper IP as per above table will satisfy all conditions required:

1. Since the first flop will always be +ve edge, no issue with directly connecting it with EDT chains.
2. These chains can be connected as explicit LBIST chains.
3. The clock skew inside the hard IP will not cause any hold violation during concatenation of these
chains with SOG chains because proper lock up latches are inserted at start and end of chains.
4. ATPG DRC violation-K21, implicitly taken care as the first and last flops is always +ve flop.
5. No special care has to taken for hard macro chains during LBIST controller generation (except the maximum length) as these can be merged with SOG chains with no issues.
6. In case there is need to bypass the hard macro chains, 1 +ve flop is added to abide by EDT rules.

Limitations of above structure

Extra FFS are added in hard macro chains depending on the polarity of the start and end FFS. This leads to increase in maximum length of LBIST chains which are generally restricted by length of hard macro chains.

Scan bypass wrappers can be coded in different customized way to meet the challenges encountered during scan stitching of the circuit.

Conclusion

The text gives the hands-on challenges faced during stitching the flops in complex DUTs, care abouts to taken during the process to enable robust scan across all process voltage temperature corners and feasible solutions for solving the challenges encountered during to enable DFT ATPG/LBIST testing. While doing stitching these problems should be considered and proper lock-up latches should be inserted to make the timing during scan modes more robust and also ensure decent ATPG coverage.

About the authors: Reecha Jajodia and Paridhi Agrawal