Powering LED Lighting & Other Illumination Devices - Part 1

Hua (Walker) Bai, Linear Technology Corp., Milpitas, CA USA - March 16, 2015

Excerpted from Section 21 of "Analog Circuit Design: Volume 3 - The Design Note Collection". Edited by Bob Dobkin & John Hamburger, Linear Technology Corporation, Milpitas, CA, USA . Published by Newnes, an imprint of Elsevier. 2015 Linear Technology Corporation. Published by Elsevier Inc. All rights reserved.
EDN readers receive a 25% discount on this book, and books on related topics at Elsevier's online store when they apply the discount code PBTY15 to their purchases.

ISBN: 978-0-12-800001-4

Key words: LED driver, synchronous step-down high current LED driver, solid-state lighting, green lighting, LT3763, LED lighting, Solar-powered battery charger.

Introduction
The meaning of the term “high power LED” is rapidly evolving. Although a 350mA LED could easily earn the stamp of “high power” a few years ago, it could not hold a candle to the 20A LED or the 40A laser diodes of today. High power LEDs are now used in DLP projectors, surgical equipment, stage lighting, automotive lighting and other applications traditionally served by high intensity bulbs. To meet the high light output requirements of these applications, high power LEDs are often used in series. The problem is that several series-connected LEDs require a high voltage LED driver circuit.

LED driver design is further complicated by applications that require fast LED current response to PWM dimming signals. The LT3763 is a 60V synchronous, step-down DC/DC controller designed to accurately regulate LED current at up to 20A with fast PWM dimming. It is a higher voltage version of its predecessor, the LT3743. It can be applied in a number of other applications thanks to its three additional regulation loops. This application note includes the following examples:

1) - An output voltage regulation loop enables constant output voltage operation. This can be used to provide open LED protection or charging termination for a battery charger.
2) - A second current regulation loop can be used to set an input current limit.
3) - An input voltage regulation loop can be used for maximum power tracking (MPPT) in solar-powered applications.

Example #1: A 48V input to 35V output, 10A LED driver optimized for efficiency

Figure 282.1 shows a design that delivers 350W output power to drive up to seven LEDs in series
from a 48V source. At this high power level, dissipated power is a major concern, so high efficiency is critical. Each 1% of efficiency improvement reduces the loss by 3.5W—significant if the total power loss budget is less than 7W. This circuit is optimized to operate with 98.2% efficiency at full load—Figure 282.2 shows the efficiency reaching 98% when LED current is above 3A and peaking at 98.4% at ~6A.

![Circuit Diagram](image)

Figure 282.1 • 48V Input to 35V Output, 10A

At high voltage, the switching losses of the MOSFETs and the inductor outweigh conduction losses. The switching frequency is set to 200kHz to minimize switching losses while maintaining small solution size. Running at full load, this circuit’s hot spot occurs at the top MOSFETs, which settles at less than 50°C temperature rise—a very comfortable range for the MOSFETs.
Example #2 - 36V input to 20V output, 10A LED driver with fastest PWM dimming

PWM LED dimming is the standard dimming method for high power, high performance lighting applications. Fast LED current response to a PWM signal is important in image-producing applications, such as DLP projectors. Figure 282.3 shows the LT3763 in an application optimized for fast LED PWM dimming.

To achieve fast LED current response to the PWM signal, the LT3763 includes many innovative
features. For a given input voltage, the smaller the inductance, the faster the inductor current ramps up, which translates to faster LED current response. This circuit takes only a few microseconds to reach full LED current from zero current when a PWM dimming signal is turned on. Figure 282.4 shows the performance in the PWM dimming application. Efficiency is 97% at full load.

![Figure 282.4 • PWM Dimming Performance of Figure 282.3 Circuit](image)

Example #3 Solar-powered battery charger

The LT3763 can also regulate its input voltage by adjusting its output current. This is useful for applications that must track peak input power such as in a solar-powered battery charger. Every solar panel has a point of maximum output power that depends on panel illumination, voltage and output current of the panel. In general, peak power is achieved by maintaining the panel voltage in a small range by reducing output current when needed to prevent the panel voltage from moving out of this range. This is called maximum power point tracking (MPPT).

The LT3763’s input voltage regulation loop keeps the panel voltage in maximum power point range by adjusting output current. The constant current, constant voltage (CCCV) operation and C/10 function make the part a natural fit for battery charger applications.

Conclusion

The LT3763 is a 60V, synchronous, high current step-down LED driver controller that can be used to drive the latest high power LEDs, with fast PWM dimming response if needed. The LT3763 is not limited to LED driver applications, due to its three additional voltage and current regulation loops and a number of other powerful features.

References:

Author Bios:

Section Author: Hua (Walker) Bai is an applications engineer at Linear Technology, focused on power management products. He previously held engineering positions with Jacobs Vehicle Systems and BEI Technologies. He holds a Ph.D. in Electrical Engineering from the University of Missouri-Rolla.
Book Co-Editor: Bob Dobkin is a founder and Chief Technical Officer of Linear Technology Corporation. Prior to 1999, he was responsible for all new product development at Linear. Before founding Linear Technology in 1981, Dobkin was Director of Advanced Circuit Development at National Semiconductor for eleven years. He has been intimately involved in the development of high performance linear integrated circuits for over 30 years and has generated many industry standard circuits. Dobkin holds over 100 patents pertaining to linear ICs and has authored over 50 articles and papers. He attended the Massachusetts Institute of Technology.

Book Co-Editor: John Hamburger directs global marketing communications programs at Linear Technology, where he was instrumental in developing the Analog Circuit Design book series. Previously with Luminous Networks and Terayon Communication Systems, he helped define marketing strategy from startup to public company, and held positions with Cypress Semiconductor and AMD. Prior to his career in high tech, he was an editor for Addison-Wesley, Harper & Row, WH Freeman, Harcourt Brace, Stanford University Press, and Runner’s World. He holds a degree from the University of Chicago.

Excerpted from Section 21 of "Analog Circuit Design: Volume 3 - The Design Note Collection". Edited by Bob Dobkin & John Hamburger, Linear Technology Corporation, Milpitas, CA, USA. Published by Newnes, an imprint of Elsevier. 2015 Linear Technology Corporation. Published by Elsevier Inc. All rights reserved.

EDN readers receive a 25% discount on this book, and books on related topics at Elsevier’s online store when they apply the discount code PBTY15 to their purchases.