Slope Compensation in PCMC DC-DC Converters

Sergio Franco - March 25, 2015

Over the years I’ve run into a number of engineers who haven’t had the chance to fully master the concept of slope compensation in dc-dc converters. I’ll try to clarify this concept using the buck converter as a vehicle. Figure 1 exemplifies the buck conversion principle. The switch is toggled between the source V_I and ground at a frequency f_S. The corresponding period is $T_S = 1/f_S$, and the portion of T_S during which the switch is in the up position is denoted as DT_S, where D is the duty cycle ($0 < D < 1$). A PSpice simulation of the circuit with $f_S = 100$ kHz and $D = 0.25$ yields the waveforms of Figure 2. Viewing the circuit as a low-pass filter, we note that after an initial transient, the circuit achieves a form of steady state during which V_O settles around 3 V, though with a small amount of ripple. If we raise D to 0.5, V_O will settle around 6 V, and if we raise D to 0.75, V_O will settle around 9 V.

In fact, it is easily seen that V_O settles around the average of the square-wave denoted as v_{sw} in Figure 1, which is

$$V_O = DV_I \quad (1)$$

Since $0 < D < 1$, it is apparent that the circuit acts as a form of voltage divider, with Equation (1) holding regardless of the current demanded by the load R_L. Initially, a good portion of the inductor current goes into charging up C, but once the circuit reaches its steady state, the capacitor current will average to zero, so the average current I_L supplied by the inductor will equal the average...
current I_o demanded by the load. In the above example, $I_L = I_o = V_o/R_L = 3$ A.

The most popular application of the buck converter is the regulation of V_o. To regulate, the circuit of Figure 1 must include a controller to sense V_o and to continuously adjust D so as to maintain V_o at a prescribed value regardless of possible variations in V_i. Needless to say, the controller is a negative-feedback system. The RLC values of Figure 1 were deliberately chosen for a critically damped transient, but the RLC circuit in use will not necessarily be critically damped, so it is the responsibility of the controller to provide sufficient phase margin to ensure adequate regulator dynamics.

Figure 2 PSpice waveforms for the circuit of Figure 1 for the case $f_s = 100$ kHz and $D = 0.25$.

How does the controller adjust D? There are two classes of controllers, voltage-mode and current-mode controllers. The following discussion will address a popular subclass of the latter, namely, peak-current-mode control, or PCMC, an example of which is depicted in Figure 3. To sense the inductor current i_L, the circuit uses a small series resistor R_{sense}, whose voltage drop is then magnified by an amplifier having a gain of a_i. This amplifier converts i_L to the voltage $R_i i_L$, where

$$R_i = a_i R_{sense} \tag{2}$$

is the overall gain of the current-to-voltage conversion, in V/A, or ohms. To sense the output voltage V_o, the circuit uses the voltage divider R_1-R_2 to generate the voltage βV_o, with
Central to the system is the error amplifier EA, a high-gain amplifier that compares βV_o against a reference voltage V_{REF} and outputs whatever voltage v_{EA} it takes to make their difference approach zero, thus giving

$$V_o = \left(1 + \frac{R_2}{R_1}\right)V_{\text{REF}}$$

(4)

Once it reaches its steady state, the circuit operates as follows:

A cycle initiates when a clock pulse sets the flip-flop. This closes the M_p switch to make $v_{sw} = V_i$. During this portion of the cycle, denoted as DT_s in Figure 4, the inductor current i_L ramps up with a slope of S_n governed by the i_L-v_L inductor law, or $S_n = di_L/dt = v_L/L$. During this time we have $v_L = V_i - V_o$, so

$$S_n = \frac{V_i - V_o}{L}$$

(5)
Turning back to Figure 3, we observe that the CMP comparator continuously compares the voltage $R_i L$ against the voltage v_{EA} and that as soon as $R_i L$ reaches v_{EA}, the CMP trips to reset the flip-flop. Dividing both sides by R_i, this is equivalent to saying that the CMP trips as soon as i_L reaches the value

$$i_{EA} = \frac{v_{EA}}{R_i}$$

This allows us to visualize a cycle exclusively in terms of currents as in Figure 4. Now, resetting the flip-flop opens the M_p switch while closing the M_n switch to make $v_{SW} = 0$. During the remainder of the cycle, denoted as $(1 - D)T_s$, we have $v_L = 0 - V_o$, so i_L ramps down with a slope of S_f such that

$$S_f = \frac{-V_o}{L}$$

A new cycle begins with the arrival of the next clock pulse.

Two Flaws of Uncompensated PCMC

As is, the circuit of Figure 3 suffers from two flaws. The first flaw is depicted in Figure 5 for the case of a converter designed to regulate V_o at 3.0 V (for simplicity, a cycle is assumed to start at $t = 0$). Figure 4a shows the steady-state inductor current i_L and its average I_L for the case $V_i = 9$ V, corresponding to a duty cycle of $D = 3/9 = 1/3$. Suppose now V_i drops to 4.5 V, corresponding to a duty cycle of $D = 3/4.5 = 2/3$. Assuming v_{EA} hasn’t had time to change appreciably, the average inductor current I_L will rise as in Figure 5b. This is so because while the down-slope S_r remains constant at $-3/L$, the up-slope S_f decreases from $(9 - 3)/L$ to $(4.5 - 3)/L$, that is, from $6/L$ to $1.5/L$.
With an increased I_L, V_o will also tend to increase, indicating poor regulation.

\[V_I (9 \text{ V}) \quad L \quad V_O (3 \text{ V}) \]
\[D = \frac{3}{3} = \frac{1}{3} \quad i_L \]
\[S_n = \frac{9 - 3}{L} = \frac{6}{L} \quad S_f = \frac{3}{L} \]

\[V_I (4.5 \text{ V}) \quad L \quad V_O (3 \text{ V}) \]
\[D = \frac{3}{4.5} = \frac{2}{3} \quad i_L \]
\[S_n = \frac{4.5 - 3}{L} = \frac{1.5}{L} \quad S_f = \frac{-3}{L} \]

Figure 5 The inductor current of the circuit of Figure 3 for two different duty cycles.

The second flaw is a form of instability known as sub-harmonic oscillation, which arises for $D > 0.5$. **Figure 6** shows how an inductor current perturbation $i_l(0)$ at the beginning of a cycle evolves into the perturbation $i_l(T_s)$ at the end of the cycle. (A perturbation might be due, for instance, to a misfiring of the comparator in the course of the previous cycle.) Using simple geometry we can write $i_l(0)/?t = S_n$ and $i_l(T_s)/?t = S_f$. Eliminating $?t$ gives

\[\frac{i_l(T_s)}{i_l(0)} = \frac{S_f}{S_n} = \frac{-D}{1-D} \]

indicating that (a) the polarity of $i_l(T_s)$ is opposite to that of $i_l(0)$, and (b) for $D < 0.5$ its magnitude will decrease to die out after a sufficient number of cycles, but for $D > 0.5$ it will tend to increase from one cycle to the next, leading to the aforementioned sub-harmonic instability.
Slope Compensation

Looking back at Figure 5, we observe that if we want Figure 5b to retain the same I_L value as Figure 5a, we need to reduce the i_{EA} value of Figure 5b so as to “push down” the i_L waveform till the respective I_Ls align. By how much do we need to reduce i_{EA}? To answer, let us draw the desired i_L waveforms for three different values of D. As depicted in Figure 7, top, we start out by drawing the down-ramps for i_L, all vertically centered about identical I_Ls, and all with the same slope of $S_f = -V_o/L$. Next, we complete the i_L waveforms by drawing the up-ramps, as shown in Figure 7, bottom. Finally, we superimpose the three figures as in Figure 8, and observe that the locus of the peaks defines a ramp with a slope of $S_f/2 = -V_o/2L$.

Figure 6 Illustrating sub-harmonic oscillation for $D > 0.5$.

![Illustrating sub-harmonic oscillation for D > 0.5.](image)
Figure 7 Constructing the compensated i_L waveforms for $D = 0.25$, 0.5, and 0.75.

Figure 8 The locus of the peaks of Figure 7 is a ramp with a slope of $S/2$.
This shows precisely by how we must reduce i_{EA}, hence the designation *slope compensation*.

Figure 9 shows one way of modifying the circuit of Figure 3 so as to achieve slope compensation. The circuit now includes a saw-tooth generator operating at a frequency of f_s, whose output v_{RAMP} is then subtracted from v_{EA} to produce the desired locus of peak values for i_L. With slope compensation, the waveforms of Figure 5 change as depicted in Figure 10, where $i_{EA(comp)} = (v_{EA} - v_{RAMP})/R_i$.
As an added bonus, slope compensation also eliminates sub-harmonic oscillation, as depicted in Figure 11. Using graphical inspection, we observe that a beginning-of-cycle disturbance $i(t(0))$ will result in an end-of-cycle disturbance $i(T_s)$ of lesser magnitude, even though $D > 0.5$ (in fact, you can convince yourself that this holds for any value of D, $0 < D < 1$). It is the case to say that with slope compensation we are in effect killing two birds with one slope – ops stone. The error amplifier EA, shown in Figure 9 as a mere triangle, serves two important functions: (a) to drive its inverting input voltage as close as necessary to the non-inverting one so as to approximate Eq. (4), and (b) to provide a frequency profile suitable to ensure a prescribed phase margin for the whole system. Not at all an ordinary amplifier, which can easily form the body of a future blog on stability analysis and error-amplifier design.
Figure 11 Slope compensation prevents sub-harmonic oscillation regardless of D.

References

[1] Design with Operational Amplifiers and Analog Integrated Circuits, Sergio Franco