**Analog Circuit Design, Part 5: Integrated 100V controller drives high power LED strings from just about any input**

Keith Szolusha - June 02, 2015

**Introduction**

Strings of high power solid-state LEDs are replacing traditional lighting technologies in large area and high Lumens light sources because of their high quality light output, unmatched durability, relatively low lifetime cost, constant-color dimming and energy efficiency. The list of applications grows daily, including LCD backlights and projection, industrial and architectural lighting, automotive lights, streetlights, billboards and stadium lights.

As the list expands, so does the range of $V_{IN}$ for the LED drivers. LED drivers must be able to handle wide ranging inputs, including transient voltages of automotive batteries, a wide range of other batteries and "wall wart" voltages. For LED lighting manufacturers, applying a different LED driver for each application means stocking, testing and designing with a number of controllers. It would be better to use just one that can be applied to many solutions.
The LT3756 high voltage LED driver features a unique topological versatility that allows it to be used in boost, buck-boost mode, buck mode, SEPIC, flyback and other topologies. Its high power capability provides potentially hundreds of watts of LED power over a wide input voltage range. Its 100V floating LED current sense inputs provide accurate LED current sensing. Excellent PWM dimming architecture produces high dimming ratios.

A number of features protect the LEDs and surrounding components. Shutdown and under-voltage lockout, when combined with analog dimming derived from the input, provide the standard ON/OFF feature as well as a reduced LED current should the battery voltage drop to unacceptably low levels. Analog dimming is accurate and can be combined with PWM dimming for a wide range of brightness control. Softstart prevents spiking inrush currents. The OPENLED pin informs of open or missing LEDs and the SYNC (LT3756-1) pin can be used to sync switching to an external clock. The FB voltage loop limits the max VOUT to protect the converter in the case of open LEDs.

The 16-pin IC is available in a tiny QFN (3mm × 3mm) and an MSE package, both thermally enhanced. For lower input voltage requirements, the 40V \( \text{IN} \), 75V \( \text{OUT} \) LT3755 LED controller is a similar option.

**Boost mode**

Lighting systems for stadiums, spotlights and billboards require huge strings of LEDs running at high power. The LT3756 controller drives up to 100V LED strings. The 125W LED driver in Figure 286.1 has a 40V–60V input.

![Figure 286.1 • A 125W, 83V at 1.5A, 97% Efficient Boost LED Driver for Stadium Lighting.](image)

The high power gate driver switches two 100V MOSFETs at 250kHz. This switching frequency minimizes the size of the discrete components while maintaining high 97% efficiency, producing a less-than-50°C discrete component temperature rise—more manageable than the heat produced by the 125W LEDs.

Even if PWM dimming is not required, the PW \( \text{MOUT} \) MOSFET is useful for LED disconnect during shutdown. It prevents current from running through the string of LEDs. If the LED string is removed, the FB constant-voltage loop takes over and regulates the output at 95V. Without over-voltage protection, the LED sense resistor would see zero current and the output cap voltage would go over 100V, exceeding several max ratings. While in OVP OPENLED(-) goes low.

**Buck mode**

When \( \text{V_IN} \) is higher than \( \text{V_LED} \), the LT3756 can serve equally well as a buck mode LED driver. The buck mode LED driver in Figure 286.2 operates with a wide 10V-to-80V input range to drive one or two LEDs at 1A.
PWM dimming requires a level-shift from the PWMOOUT pin to the high-side LED string. The max
PWM dimming ratio increases with higher switching frequency, lower PWM dimming frequency,
higher $V_{IN}$ and lower LED power. In this case, a 100:1 dimming ratio is possible with a 100Hz
dimming frequency and a 48V input. Although higher switching frequency is possible, the duty cycle
has its limits. Generous minimum on-time and minimum off-time restrictions require a frequency on
the lower end of its range (150kHz) to meet both the harsh high-$V_{IN}$-to-low-$V_{LED}$ (80$V_{IN}$ to one 3.5V
LED) and low-$V_{IN}$-dropout requirements (10$V_{IN}$ to 7$V_{LED}$).

OVP of the buck mode LED driver has a level shift as well. Without the level-shifted OVP network
tied to FB, an open LED string would result in the output capacitor charging up to $V_{IN}$. Although the
buck mode components will survive this scenario, the LEDs may not survive being plugged into a
potential equal to $V_{IN}$.

**Buck-boost mode**

A common LED driver requirement is that the ranges of both the LED string voltage and the input
voltage are wide and overlapping. In fact, some designers prefer to use the same LED driver circuit
for several different battery sources and several different LED strings. Such a versatile configuration
trades some efficiency, component cost, and board space for design simplicity, and time-to-market.

The buck-boost mode driver in Figure 286.3 uses a single inductor. It accepts inputs from 9V to 36V
to drive 10V–50V LED strings at 400mA.
The inductor current is the sum of the input current and the LED string current; the peak inductor current is equal to the peak switching current. Below 9V input, CTRL analog dimming scales back the LED current to keep the inductor current under control. UVLO turns off the LEDs below $6V_{IN}$. $C_{OUT}$, DI and MI can see voltages as high as 95V here.

Conclusion
The LT3756 controller is a versatile high power LED driver. It has all the features required for large (and small) strings of high power LEDs. Its high voltage rating, optimized LED driver architecture, high performance PWM dimming, host of protection features and accurate high side current sensing make the LT3756 a single-IC choice for a variety of lighting systems.

References:

Author Bios:
Bob Dobkin is a founder and Chief Technical Officer of Linear Technology Corporation. Prior to 1999, he was responsible for all new product development at Linear. Before founding Linear Technology in 1981, Dobkin was Director of Advanced Circuit Development at National Semiconductor for eleven years. He has been intimately involved in the development of high performance linear integrated circuits for over 30 years and has generated many industry standard circuits. Dobkin holds over 100 patents pertaining to linear ICs and has authored over 50 articles and papers. He attended the Massachusetts Institute of Technology.

John Hamburger directs global marketing communications programs at Linear Technology, where he was instrumental in developing the Analog Circuit Design book series. Previously with Luminous Networks and Terayon Communication Systems, he helped define marketing strategy from startup to public company, and held positions with Cypress Semiconductor and AMD. Prior to his career in high tech, he was an editor for Addison-Wesley, Harper & Row, WH Freeman, Harcourt Brace,
Stanford University Press, and Runner’s World. He holds a degree from the University of Chicago.

Excerpted from Section 21 of "Analog Circuit Design: Volume 3 - The Design Note Collection". Edited by Bob Dobkin & John Hamburger, Linear Technology Corporation, Milpitas, CA, USA. Published by Newnes, an imprint of Elsevier. EDN readers receive a 25% discount on this book, and books on related topics at Elsevier's online store when they apply the discount code PBTY15 to their purchases.