Versatile TFT LCD bias supply and white LED driver in a 4×4mm QFN

Eddy Wells, Linear Technology Corp - September 02, 2015

This article is excerpted from Section 21 of "Analog Circuit Design: Volume 3 - The Design Note Collection," (ISBN: 978-0-12-800001-4), edited by Bob Dobkin and John Hamburger of Linear Technology Corporation, and published by Newnes, an imprint of Elsevier. EDN readers receive a 25% discount on this book, and books on related topics at Elsevier's online store when they apply the discount code PBTY15 to their purchases.

Introduction

The makers of handheld medical, industrial, and consumer devices use a wide variety of high resolution, small to medium sized color TFT LCD displays. The power supply designers for these displays must contend with shrinking board area, tight schedules, and variations in display types and feature requirements. The LTC3524 simplifies the designer’s job by combining a versatile, easily programmed, TFT LCD bias supply and white LED backlight driver in a low profile 4×4mm QFN package.

The LTC3524’s 2.5 to 6V input supply range is ideally suited for portable devices powered from Li-Ion or multiple alkaline or nickel cells. Both the LCD and LED drivers operate at 1.5MHz, allowing the use of tiny, low cost, inductors and capacitors.

Figure 289.1 • LTC3524 TFT LCD Supply Sequencing at Power-Up and Power-Down
The TFT bias portion of the circuit consists of a synchronous boost converter, adjustable between 3 and 6V, providing the main analog V_{out} for the TFT. Low current gate drive voltages (V_H and V_N) are generated using integrated charge pump circuits. These low noise outputs are programmable to ±20V, allowing optimal bias for multiple display types and makers. The TFT outputs are sequenced at power-up and discharged at power-down as shown in Figure 289.1.

A second non-synchronous boost converter generates the voltage required to regulate one or two LED strings at up to 25mA each. LED current can be adjusted by either analog or digital means, optimizing the TFT display for varying ambient light conditions. Each string is independently enabled and can contain one to five LEDs in series. Internal circuitry maintains equal current in the strings, even when the forward voltage drops of the LEDs do not match. Open LED protection is provided to prevent the output from exceeding 24V.

![Figure 289.1](image1)

A 3-output TFT supply with digitally dimmed LED backlight

A LTC3524-based TFT and backlight solution for a 4 to 6 inch LCD is shown in Figure 289.2. High frequency operation of the power components and the QFN package shrinks the total converter footprint to approximately 120mm² (single sided). The circuit schematic is shown in Figure 289.3. The TFT bias portion of the circuit provides a 5V, 25mA output for the TFT drivers as well as 12.5 and −7.5V outputs with up to 2mA for the gate bias. These voltages are programmed using the
FBVO, FBH, and FBN pins respectively.

As shown in Figure 289.1, these outputs are sequenced with V_{OUT}, VN, then VH powered, as required by most displays. The outputs are actively discharged when ELCD is brought low, removing voltage from the display. The white LED backlight for the Figure 289.3 circuit consists of two strings with four series LEDs. The LEDs are driven from the high side with the LTC3524, allowing the strings to terminate at ground, reducing the number of wires required to power the display. With $R_{\text{PROG}} = 100\text{k}$, each LED is regulated to 20mA. Maximum power for the backlight is approximately 600mW, assuming a forward voltage around 3.6V per element.

Figure 289.3 • Complete TFT and LED Solution

Dimming is achieved by changing the duty cycle of a 200Hz power signal applied to the LED strings. The frequency is high enough to prevent visually detectable flickering, but low enough to allow a better than 100:1 dimming range. Dimming is implemented by simply connecting a microprocessor controlled port to ELED1 and ELED2. Scope waveforms at 50% duty cycle are shown in Figure 289.4.
Efficiency results for this design are given in Figure 289.4 with a 3.6V input. The LCD efficiency curve shows the performance of the synchronous boost converter with \(V_{\text{OUT}} \) at 5V and varying load current. This curve includes the no load quiescent current of the charge-pumps, which are powered from \(V_{\text{OUT}} \). Analog dimming of the LEDs can be implemented by adjusting the current through the PROG pin. Efficiency for analog dimming is shown in Figure 289.5. Efficiency with PWM dimming would remain close to 78% over a wide dimming range.

Figure 289.4 • Burst Dimming Waveforms
Conclusion

The LTC3524 shrinks and simplifies the design of small to medium sized TFT LCDs by combining the LCD supply and LED driver in a single compact package. LCD bias voltages and LED currents are programmable, making it possible to simplify parts stock by using the LTC3524 for a wide variety of displays.

This article is excerpted from Section 21 of "Analog Circuit Design: Volume 3 - The Design Note Collection," (ISBN: 978-0-12-800001-4), edited by Bob Dobkin and John Hamburger of Linear Technology Corporation, and published by Newnes, an imprint of Elsevier. EDN readers receive a 25% discount on this book, and books on related topics at Elsevier's online store when they apply the discount code PBTY15 to their purchases.

Further reading

If you missed any previous installment of the series, be sure to check out:

Part 1: Powering LED Lighting & Other Illumination Devices, part 1
A 60V, synchronous step-down high current LED driver

Part 2: Powering LED Lighting & Other Illumination Devices, part 2
A 60V buck-boost controller drives high power LEDs, charges batteries and regulates voltage with up to 98.5% efficiency at 100W and higher.

Part 3: Powering LED Lighting & Other Illumination Devices, part 3
Offline LED lighting simplified: A high power factor, isolated LED driver needs no opto-isolators and is TRIAC dimmer compatible.
Part 4: Reducing cost & complexity of LCD LED backlights with single-IC, single-inductor multi-string LED driver architectures

Part 5: Integrated 100V controller drives high power LED strings from just about any input

Part 6: Triple LED driver supports LCD backlights in buck, boost or buck-boost modes, delivers 3000:1 dimming ratio

Part 7: μModule LED driver integrates all circuitry in a SMT package